Архитектурная акустика общие сведения. Акустика концертно-театральных залов

Несколько лет назад, сравнивая опубликованные данные различных акустических исследований, автор пришел к двум заключениям: во-первых, практически все акустические дефекты залов обусловлены отражением звука; во-вторых, расположение отражающих поверхностей вблизи источника звука улучшает условия как для речи, так и для музыки. Заключения эти отнюдь не противоречивы, так как звуки, отраженные от поверхностей, расположенных вблизи источника, приходят почти сразу после прямого звука и поэтому полезны; отражения же, приходящие позднее, вредны. Оба эти заключения логически (хотя и неожиданно) подсказаны исследованием открытых театров, в которых отраженные звуки практически отсутствуют. Такие театры обычно имеют хорошую акустику, особенно если их сцена оборудована отражающими поверхностями. Исходя из подобных соображений, можно сформулировать два правила, следование которым необходимо для достижения идеальной акустики закрытого зала:

Шум, как и химическое загрязнение, является болезнью и должен быть искоренен из жизни человека. Он был построен после необычного зрительного зала Берладжа в Амстердаме. Благодаря своей исключительной акустике он гарантирует оптимальный уровень звука с любого из трех уровней: коробки, пулеметы и боковые лотки. Он также имеет мобильную сцену, акустический отражатель, подвешенный на сцене и диспетчерскую. Он предлагает восемнадцать доступа из фойе, главного зала, Зигурата после этапа и пристройки на внутренней улице; и имеет разные пространства для выступлений для музыкантов, вход в инструменты и доступ широкой общественности.

Сцена должна быть оборудована отражающими поверхностями, позволяющими исполнителям «слышать самих себя».

Отраженный звук в зрительном зале должен быть ослаблен до степени, сравнимой с условиями в открытых театрах.

Существует неправильное представление о том, что отражение звука необходимо для создания достаточной громкости в зале. Можно показать, увеличение уровня интенсивности звука, обусловленное отражениями, следующими за первыми полезными отражениями (т. е. для отражений, возникающих между 0,05 сек. и 1,3 сек. после возникновения звука), составляет лишь 4 децибела. Это увеличение почти незаметно.

Пространство для концертов, 280 мест. При его строительстве металлические колоды были полностью удалены, а металлические фермы оригинального здания были удалены, усилены и перемещены. Это придало комнате новое покрытие, обеспечивающее его звукоизоляцию. Широкое и гибкое пространство, идеальное для нескольких событий. Во время вмешательства второго корпуса оригинального здания бетонные опоры, поддерживаемые турбинами, использовались для установки демонстрационного зала на первом этаже и выделения большой поверхности верхнего этажа для многочисленных художественных работ.

Для более обширных помещений это увеличение несколько значительнее, однако надо заметить, что требуемая громкость в больших залах обычно достигается при помощи системы звукоусиления. Таким образом, оказывается, что только первые несколько отражений звука полезны, а более поздние, вредные отражения не способствуют, как это предполагалось раньше, повышению громкости звука.

В нем подчеркивается оригинальный кран-мост итальянской Аргентины, который сегодня продолжает работать. Его внутренние фасады покрыты парижским камнем, а подвал - гранитом. На полу, совпадающем с разрывами между портиками нижнего этажа, есть полы из стеклянных кирпичей, чтобы доставить зенитный свет в выставочный зал.

Это центральное пространство здания и образует большой дистрибьютор между Аудиторием, Камерной комнатой, внутренней улицей и соединяет это тело с Главным Небом. Это «как музыкальный ансамбль, где голос и инструменты передают правильную интерпретацию». На земле сохранились булыжники и оригинальные железные дороги.

Далее, рассмотрение целого ряда различных опубликованных материалов показывает, что все акустические недостатки залов практически можно приписать отраженному звуку (эхо, чрезмерная реверберация, интерференция, резонанс и неправильная, искаженная передача артикуляции)

Небольшие концертные залы. Удачной иллюстрацией предлагаемой теории может служить один из ранних опытов автора. При исследовании оптимальных условий для музыки в закрытом помещении выяснилось, что музыканты предпочитают играть, находясь в реверберирующем пространстве, слушатели же предпочитают «глухое» окружающее пространство.

При входе вы можете увидеть главную башню со своими часами, оригинальным цистернным баком и восстановленными фасадами. В комнате, где разрабатываются кинематографические прогнозы, эссе, семинары и конкретные мероприятия. Мобильный вкладыш важен, но это еще не все. Только мобильный лайнер не производит акустического качества Сала Сан-Паулу - и не будет делать другого концертного зала. Многие из застроенных залов, почитаемых музыкантами, маэстро и любителями симфонической музыки, не имеют подвижной подкладки или какого-либо устройства акустической регулировки.

Прежде всего, для получения оптимальной реверберации в помещении объемом около 190 м3 по стенам был расположен звукопоглощающий материал, как это показано на рис. 42. Затем была прослушана игра квартета (три скрипки и виолончель), расположившегося в одном из концов помещения. Как музыканты, так и слушатели остались недовольны музыкальным эффектом. Когда же поглощающий материал постепенно переносился со стен вблизи музыкантов в часть помещения, занятую слушателями, то музыкальное впечатление как у самих музыкантов, так и у слушателей стало улучшаться и, наконец, стало «идеальным» (рис. 43). Отражающие стены позволили музыкантам «слышать

Геометрия комнаты, расположение счетчиков, дизайн фронтов счетчиков, размещение сцены, отсутствие ковров или занавесок, толщина дерева сцены, дизайн кресел, тяжелые стены, неравномерность эклектической архитектуры существующее здание в Сан-Паульском зале представляет собой важный список небольших вкладов, абсолютно фундаментальных для качества его акустического климата. Если в комнате Сан-Паулу был правильный мобильный лайнер, но все остальные элементы были неправильными, конечно, акустический климат был бы намного ниже.

Но если в комнате был фиксированный потолок, правильная высота и все другие правильные элементы, это было бы менее универсальным, существующая архитектура была бы менее оценена и все же была бы акустически отличной. Так что же за мобильный лайнер? Зачем настраивать акустику помещения? Наличие комнаты, которая может регулировать вашу акустику, например, комнату Сан-Паулу, интересна для размещения этих и других акустических тонкостей. Когда вкладыш поднимается или опускается, он увеличивает или уменьшает объем воздуха внутри помещения.

Рисунок 42. Экспериментальное помещение, оборудованное поглотителем, создающим нормальные оптимальные условия для реверберации-. Оно оказалось, однако, неудовлетворительным для

музыкантов.

самих себя», тогда как другая часть помещения представляла «глухое» пространство, подобное пространству открытых театров (рис. 44). Нужно заметить, что в этом случае окружающие музыкантов стены не были параллельны, и таким образом собственные колебания и резонанс были ослаблены.

Это движение эффективно изменяет физический размер и, следовательно, время реверберации звука. Но есть и другие одинаково важные факторы в акустической регуляции комнаты. Концертные залы - это места для музыки и требуют более продолжительного времени реверберации, чем театры, обеспечивая ясность в прослушивании музыки, предоставляя жизнь в комнату, позволяя ей «петь». И для комнаты, чтобы петь, она должна отвечать акустическим превосходством и щедростью. Ничего, кроме акустики, приглушенной акустики кинотеатров и «сухих» театров.

Надежда Банегал утверждала, что каждая аудитория происходит от двух классов: те, которые эволюционировали от звуков пещер и тех, которые эволюционировали от звука на открытом воздухе. Концертные залы развивались из пещер и уличных звуковых театров. В комнате есть «специальность», если воспроизводимая музыка кажется слушателю как играемый источником, более широким, чем визуальная ширина самого источника. Этот атрибут называется «видимой шириной шрифта». В комнате Сан-Паулу, будучи прямоугольной и «узкой», первичные отражения звука поступают в боковом направлении и, по-видимому, «расширяют» источник, создавая ощущение пространственности и причастности.

Исполнители и слушатели в реверберирующем помещении. В другом опыте, давшем аналогичные результаты, изучалась игра оркестра в сильно реверберирующем помещении объемом в 3 400 м3.

Рисунок. 43. Поглотители, изображенные на рис. 42, перенесены на противоположный конец помещения. Благодаря освобождению реверберирующего пространства, получены, по оценке музыкантов, прекрасные условия для исполнения.

В комнате Сан-Паулу захотелось тонального присутствия, причастности, яркости, и по этой причине шторы и ковры были изгнаны. Акустическая абсорбция контролируется площадью кресла, типом кресла и количеством сидящих людей и объемом воздуха внутри комнаты. Стены, потолок, фронты прилавков, деревянный пол, имеют низкую акустическую абсорбцию по сравнению с присутствием людей. Огромное присутствие низкочастотных звуков зависит от стен, потолков и полов из твердых материалов и низкой акустической абсорбции.

Основные европейские концертные залы прошлого века были построены из твердых и тяжелых материалов. С другой стороны, канавки и небольшие неровности важны в концертных залах для распространения звука и качества акустического климата, о чем свидетельствуют исследования профессоров Хаана и Фрике из Университета Сиднея, Австралия. Некоторые известные авторы считают наличие нарушений в качестве фундаментального аспекта в акустическом ответе комнат. Комната Сан-Паулу отмечена большим количеством небольших неровностей, которые идут от столиц колонн до формованных фигур и разрезов стен.

Количество звукопоглощающих материалов, установленных в помещении, постепенно увеличивалось, и музыканты и ряд наблюдателей высказывали свое мнение о достигаемом акустическом эффекте. Рисунок 45 показывает, что музыканты предпочитали большее время реверберации (2 секунды), а слушатели - меньшее (1 секунда), что также подтверждает высказанную выше теорию.

Эти элементы, которые были частью оригинального архитектурного дизайна комнаты, были жестко обработаны в акустическом дизайне, чтобы обеспечить отличную диффузию. В дополнение к этим, другие элементы были добавлены дизайном помещения в соответствии с этими акустическими потребностями: передняя часть счетчиков, структура подвижной подкладки, которая делает разрез с более выступающими краями, сама подкладка и имеет одинаковый тип канавки счетчики также являются важными элементами диффузии. Когда вы слышите симфонический концерт в комнате с превосходной акустикой, вы будете погружены в звуковое поле.

Звуковой отражатель в большом помещении. Третий опыт был поставлен в большом (объемом свыше 50 000 м31 спортивном зале (рис. 4б). В середине

зала над эстрадой для музыкантов был горизонтально подвешен звуковой отражатель размером 3,66 X 4,27 м. При помощи системы тросов и блоков отражатель

Деликатный опыт пространственно-временных отношений. Весь объем воздуха в комнате поет или звучит из нескольких отражений звука на их поверхностях. Концертные залы, которые отлично поют или звучат как инструмент. Ничто в них не помещается, чтобы «исправить» звук. Все акустическое, и все это архитектура. Помогите лепить пустоты и внутренние тома в поисках звука комнаты; в результате чего Палата реагирует акустически. Балконы, кресла, пазы в стойках, расположение кресел, расстояние между стойками и все другие детали, о которых уже упоминалось.

Рисунок 44. Фотография противоположного конца того же помещения с поглотителями, делающими этот конец «мертвым» для звука. По оценке наблюдателей, акустические условия весьма хороши.

можно было поднимать и опускать. По мере опускания отражателя последовательно на расстояние 3,6, 3,0, 2,5 и 2,1 м над музыкантами акустические условия соответственно улучшались. Музыканты заявляли: «легче играть», «звуки более естественны», «чем ниже отражатель, тем лучше», «звуки мягче». Слушатели, расположенные в различных частях зала, находили, что по мере опускания отражателя музыка становится более «разборчивой» и за ней легче следить Даже из отдаленных от эстрады пунктов.

Для разработки такого проекта необходимы дружеские собеседники и могут быть правильно интерпретированы Нельсоном Дюпре и Исмаэлем Соле, соответственно, архитектором и координатором проекта. Почти каждый день мы встречались, чтобы обсудить проект. На каждом шаге один - маркировка других; и поэтому мы продвигаемся вперед. По моему мнению, для определения и акустической категории, которую имеет комната Сан-Паулу, важно сотрудничество акустического инженера и дирижера Кристофера Блэра, участвовавшего в базовом дизайне комнаты.

Среди других предметов он изучил основные характеристики комнаты в физической акустической модели и служил севером для всего нашего основного дизайна. У этой работы также были огромные нераскрытые проблемы. Одним из них является конструкция виброизоляции плавучей плиты, в которой мы сотрудничали с инженером Бернардом Бодуэном. Благодаря его изобретательности мы придумали очень эффективное решение, когда было невозможно получить его в Бразилии. Консультант по акустике проекта реставрации и санации комнаты Сан-Паулу.

Архитектурная акустика - одна из древнейших областей человеческого знания, многие века успешно опиравшаяся на интуитивный и эмпирический фундамент, лишь в конце XIX века стала приобретать черты науки благодаря начавшимся измерениям взаимосвязи свойств акустических полей с формой помещений и влиянием психо-физиологических свойств пространственного слуха при восприятии звука в различных помещениях, а также определению статистическо-психологических, эстетических и семантических критериев предпочтительности архитектурно-строительных решений для разнообразных музыкальных программ и типов личностей слушателей. Одно лишь неполное перечисление целей, стоящих и поныне перед учеными, объясняет громадные сложности создания методов инженерных расчетов, позволяющих еще на стадии проектирования предвосхитить результаты строительства, а также выработать физико-технические средства - некие конструкции, обеспечивающие объективно и субъективно однозначно трактуемые результаты поставленных целей и примененных методов их достижения.

Таким образом, хотя можно построить успешный концертный зал с «фиксированной акустической подписью» и единым размером, современное состояние в этой области - это дизайн комнат, которые можно изменить, чтобы удовлетворить акустическую потребность в разные шоу. Эти изменения могут быть получены электронным путем или с изменениями в архитектуре помещения. Эталонная комната, как и комната Сан-Паулу, требует самого современного проекта; таким образом, он был выбран для переменной архитектуры и регулируемой акустики.

Чтобы гарантировать эту гибкость звука, была предложена полностью подвижная подкладка, смещение которой изменило бы объем комнаты, создав, кроме того, «акустическое пространство в сочетании», расположенное между лайнером и техническим полом. Звук достигает не только лайнера, но и связанного пространства, и с этим можно изменить некоторые нюансы в акустическом отклике комнаты. Характеристики мощности и реверберации этого связанного пространства можно настроить с помощью акустических бархатных флагов, которые управляются или собираются из механизмов, расположенных на техническом уровне.

Развитие искусств требовало соответствующих строений для массовых зрелищ. Термин "театр" и обозначает место, чтобы видеть. Впоследствии появилась потребность и в месте, чтобы слышать. Изначально архитектурная акустика была ориентирована на большие и просто огромные открытые сооружения, позже - на закрытые помещения. Во все времена субъективные суждения о качестве звучания речи и музыки в том или ином сооружении являлись единственным критерием его акустического качества. Современные концертные, театральные и кинозалы оснащаются сложными системами электроакустического формирования звуковых полей с возможностью управления акустическими свойствами помещения, аппаратурно и архитектурно оптимально адаптируемых для различных типов музыкальных программ.

Такие флаги, потому что они выше подвижной подкладки, не видны слушателям, но их присутствие, безусловно, слышно. Линейка состоит из пятнадцати панелей со стратегически определенным интервалом; его движение позволяет контролировать увеличение объема комнаты и время ее реверберации. Но зачем менять время реверберации? Каждый тип музыки был создан для одного типа пространства и, следовательно, с различными характеристиками реверберации. Например, некоторые любимые времена реверберации музыкантов, дирижеров и звукорежиссеров: симфонии «классики», такие как «Юпитер» Моцарта: 1, 5 секунды; симфонии «романтичного» как четвертого из брахмов: 2, 1 секунды; современные произведения, такие как «Весенний приз» Стравинского: 1, 7 секунды.

Все достижения науки в области архитектурной акустики используются преимущественно при проектировании общественных сооружений, то есть достаточно крупных и дорогостоящих. Методологии изучения и рекомендации для создания таких уникальных помещений отчасти могут быть использованы и при построении высококачественной комнаты прослушивания - самого дорогого компонента аудиосистемы. Одни и те же акустические процессы в помещениях описываются тремя языками - тремя теориями: волновой, статистической и геометрической. Все три метода имеют значительную взаимосвязь, дополняя друг друга, если только одним методом не удастся решить конкретную задачу. Начнем рассмотрение с самой молодой теории - волновой, переходя к другим по мере надобности.

Время реверберации указывает на задержку между испусканием определенного звука до тех пор, пока звук не станет неслышимым. Реверберационная комната называется «гостиной», а с другой стороны, комната с низким временем реверберации называется «мертвой» или «сухой». Разговорные театры требуют короткого времени реверберации, чтобы обеспечить разборчивость сказанного. Аудитории, использующие электронное усиление, обычно «мертвы», «сухие». В декламациях определение является фундаментальным элементом, и по этой причине Сала Сан-Паулу должна быть менее реверберирующей.



Геометрическая (лучевая) теория
Основные положения. Геометрическая (лучевая) теория акустических процессов в помещениях основана на законах геометрической оптики. Движение звуковых волн рассматривают подобно движению световых лучей. В соответствии с законами геометрической оптики при отражении от зеркальных поверхностей угол отражения b равен углу падения a, и падающий и отраженный лучи лежат в одной плоскости. Это справедливо, если размеры отражающих поверхностей много больше длины волны, а размеры неровностей поверхностей много меньше длины волны. Характер отражения зависит от формы отражающей поверхности. При отражении от плоской поверхности (рис.1, а) возникает мнимый источник И", место которого ощущается на слух подобно тому, как глаз видит мнимый источник света в зеркале. Отражение от вогнутой поверхности (рис 1, б) приводит к фокусировке лучей в точке И". Выпуклые поверхности (колонны, пилястры, крупные лепные украшения, люстры) рассеивают звук (рис.1, в).

Роль начальных отражений. Немаловажным для слухового восприятия является запаздывание отраженных звуковых волн. Звук, излученный источником, доходит до преграды (например, стены) и отражается от нее. Процесс многократно повторяется с потерей при каждом отражении части энергии. На места слушателей (или в точку расположения микрофона) первые запаздывающее импульсы, как правило, приходят после отражения от потолка и стен зала (студии).

Вследствие инерционности слуха человек обладает способностью сохранять (интегрировать) слуховые ощущения, объединять их в общее впечатление, если они длятся не более 50 мс (точнее 48 мс). Поэтому к полезному звуку, подкрепляющему исходный, относятся все волны, которые достигают уха в течение 50 мс после исходного звука. Запаздыванию на 50 мс соответствует разница в пути 17 м. Концентрированные звуки, приходящие позднее, воспринимаются как эхо. Отражения от преград, укладывающиеся в указанный промежуток времени, являются полезными, желательными, так как они увеличивают ощущение громкости на значения, доходящие до 5 - 6 дБ, улучшают качество звучания, придавая звуку "живость", "пластичность", "объемность". Таковы эстетические оценки музыкантов.

Исследования начальных отражений методом акустического моделирования были проведены в Научно-исследовательском кинофотоинституте (НИКФИ) под руководством А. И. Качеровича. Изучалось влияние на качество звучания речи и музыки формы, объема, линейных размеров, размещения звукопоглощающих материалов. Получены интересные результаты.

Существенную роль играет направление прихода начальных отражений. Если запаздывающие сигналы, т.е. все ранние отражения, поступают к слушателю с того же направления, что и прямой сигнал, слух почти не различает разницы в качестве звучания по сравнению со звучанием только прямого звука. Возникает впечатление "плоского" звука, лишенного объемности. Между тем даже приход только трех запаздывающих сигналов по разным направлениям, несмотря на отсутствие реверберационного процесса, создает эффект пространственного звучания. Качество звучания зависит от того, с каких направлений и в какой последовательности приходят запаздывающие звуки. Если первое отражение поступает с фронтальной стороны, звучание ухудшается, а если с тыльной стороны, то резко ухудшается.

Весьма существенно время запаздывания начальных отражений по отношению к моменту прихода прямого звука и относительно друг друга. Длительности запаздывания должны быть различными для наилучшего звучания речи и музыки. Хорошая разборчивость речи достигается, если первый запаздывающий сигнал поступает не позже 10 - 15 мс после прямого, а все три должны занимать интервал времени 25 - 35 мс. При звучании музыки наилучшее ощущение пространственности и "прозрачности" достигается, если первое отражение приходит к слушателю не ранее 20 мс и не позже 30 мс после прямого сигнала. Все три запаздывающих сигнала должны располагаться в промежутке времени 45 - 70 мс. Наилучший пространственный эффект достигается, если уровни запаздывающих начальных сигналов незначительно отличаются друг от друга и от уровня прямого сигнала.

При подключении к структуре начальных отражений (первого, второго, третьего) остальной части отзвука наиболее благоприятное звучание получается в том случае, когда вторая часть процесса начинается после всех дискретных отражений. Подключение же процесса реверберации (отзвука) сразу же за прямым сигналом ухудшает качество звучания.

При обеспечении оптимальной структуры начальных (ранних) отражений звучание музыки остается хорошим даже при значительном (на 10 - 15%) отклонении времени реверберации от рекомендуемого. Достижение оптимального запаздывания отраженных сигналов по отношению к прямому звуку выдвигает требование к минимальному объему помещения, которое не рекомендуется нарушать. Между тем при проектировании помещения выбирают его размеры, исходя из заданной вместимости, т.е. решают задачу чисто экономически, что неправильно. Даже в небольшом концертном зале оптимальную структуру ранних отражений можно получить лишь при заданных высоте и ширине зала перед эстрадой, меньше которых спускаться нельзя. Известно, например, что звучание симфонического оркестра в зале с низким потолком существенно хуже, чем в зале с высоким потолком.

Полученные результаты дали возможность выработать рекомендации в отношении времени запаздывания и размеров зала. Учитывалось, что первый запаздывающий сигнал, как правило, приходит от потолка, второй - от боковых стен, третий - от задней стены зала. Разные требования по времени задержки начальных отражений объясняются особенностями речи и музыкальных звуков и различием решаемых акустических задач.

Вид звучания Dt1, мс Dt2, мс Dt3, мс
Речь 10-15 15-22 25-45
Музыка 20-30 35-50 50-70

Увеличивать высоту и ширину зала в некоторой мере можно лишь на расстоянии от портала сцены (эстрады), превышающем примерно 1/4 - 1/3 общей длины зала: высоту до 10,5 м, ширину до 30 м. Длину зала выбирают, учитывая необходимость получать на самых удаленных слушательских местах достаточную энергию прямого звука. Исходя из этого обстоятельства, рекомендуют выбирать длину зала по партеру не более 40 м, а по балкону - 46 м.Чтобы добиться хорошей разборчивости речи, запаздывания должны быть сравнительно небольшими. При звучании музыки нужно подчеркнуть мелодическое начало, для обеспечения слитности звуков необходимо большее время запаздывания начальных отражений. Отсюда вытекают рекомендуемые размеры концертных залов: высота и ширина не менее 9 и 18,5 м соответственно и не более (у портала) 9 и 25 м.

В таблице приводим сведения о геометрии некоторых залов, акустические качества которых считаются хорошими (n - вместимость зала, lп - наибольшее удаление слушателя от эстрады в партере, lб - то же на балконе, Dt1 - время запаздывания первого отражения).

Таким образом, минимальные размеры помещения для воспроизведения музыки (высота и ширина) не связаны с его вместимостью, а определяются необходимой структурой начальных отражений. Даже если помещение предназначено для исполнения музыки в отсутствии слушателей (студия звукозаписи, звукового вещания, ателье записи музыки, зал прослушивания киностудии), его размеры должны определяться только качеством звучания музыки. "Экономить" на этих размерах - значительно ухудшать качество звучания.

Исторические примеры. По сохранившимся до наших времен культовым и зрелищным сооружениям видно, что основные положения лучевой теории были известны древним строителям и что эти положения неукоснительно соблюдались. Размеры греческих и римских театров на открытом воздухе были выбраны такими, чтобы в наибольшей степени использовать энергию отраженных волн.

Театры (рис.2) содержали три основные части:

сцену (shena) глубиной 3,5 - 4 м в Греции и 6 - 8 м в Риме, на которой разыгрывалось театральное действие;

площадку перед сценой - орхестру (orhestra буквально "место плясок"), на которой располагался хор и выступали танцоры;

поднимающиеся ступенями зрительские места вокруг орхестры, образующие так называемый амфитеатр (от греческих слов amphi - "с обеих сторон", "кругом" и theatron - "место зрелищ").

Звуки от исполнителей достигали зрителей, располагавшихся на амфитеатре, прямым путем 1, а также после отражений от поверхности орхестры (луч 2) и стены 3, находящихся позади сцены (рис.3,а). Плоскость орхестры покрывали хорошо отражающим материалом. Как указывал Витрувий, высоту стены 3 следовало выбирать равной высоте парапета 4, ограждавшего верхний ряд амфитеатра, "для улучшения акустики". Видимо, речь шла о том, чтобы не допустить излишнего рассеяния звуковой энергии в пространстве. Глубину сцены в греческих театрах делали небольшой, чтобы лучи 5, отраженные от задней стены, не слишком запаздывали по отношению к прямому лучу 1 и не ухудшали разборчивость речи актеров.

Часть звуковой энергии, отразившись от стен 3 и 4, уходила вверх. В современных крытых театральных залах эта энергия отражается потолком вниз и увеличивает интенсивность звука на зрительских местах. На орхестре происходили танцы и располагался хор, повторявший реплики актеров, т.е. выполнявший задачу звукоусиления. При расположении хора в точке 1 звуковые лучи, отразившись от стены 3 (рис.3,б), приходят к зрителю с большой задержкой во времени, вызывающей эхо. Для уменьшения этого недостатка в римских театрах хор стали располагать ближе к сцене, в точке 2. Тогда для направления энергии в сторону зрителей начали использовать отражения от сцены (ее высота в римских театрах достигала 3,5 м), а освободившуюся часть орхестры заняли танцоры. В современных театрах перед сценой находятся музыканты, и на них перешло название занимаемой ими площадки.

Особую роль в усилении и обогащении звучания играли так называемые "гармоники" - системы резонаторов в виде бронзовых цилиндрических сосудов и глиняных кувшинов-амфор. Они располагались в нишах стены позади зрительских мест и под скамьями. Греки считали, что для благозвучия речи и музыки резонаторы должны быть подобраны или настроены по тонам музыкальных гамм: энгармонической, хроматической и диатонической.

  • Первая система, по мнению их создателей, придавала звукам торжественность и строгость;
  • Вторая, благодаря "толпящимся" нотам, - утонченность, нежность звучанию;
  • Третья - из-за консонансности интервалов - естественность музыкальному исполнению.

Очевидно, что античные архитекторы при строительстве театров искали и находили технические пути передачи зрителям и слушателям не только смысловой (семантической), но и художественной (эстетической) информации, стремились обогатить музыкальное звучание.

Рациональной формой и разумно выбранными размерами отличались театральные и концертные залы 18 и 19 веков. Ряд хороших в акустическом отношении театральных и концертных залов был построен в разных странах в 20 веке.

Неудачные решения. Казалось бы, опыт, накопленный за тысячелетия, должен использоваться современными архитекторами и строителями. Между тем множатся примеры неудовлетворительных акустических решений, например, строительство залов круглой или эллиптической в плане формы (кинотеатр "Колизей" в Санкт-Петербурге, концертный зал им. Чайковского в Москве и др.). В них образуются зоны фокусировки отраженных лучей и зоны, в которые отраженные лучи либо не попадают, либо попадают с большой временной задержкой. В круглом в плане зале (рис.4) касательный к стене луч 1 и при последующих отражениях остается в близкой к стене зоне. Лучи 2, распространяющиеся примерно в диаметральном направлении, образуют после отражения мнимое изображение источника И", в котором интенсивность звука, как и в кольцевой зоне возле стены, повышена. Неудовлетворительными являются залы с плоским потолком и низким порталом сцены (рис.5, а). Зона АВС оказывается своеобразной ловушкой для значительной части, излучаемой источником звука энергии. Только зона DE дает полезные отражения, но они попадают лишь в удаленную часть зала ЕС. Предпочтительнее конструкции с рассеивающим потолком (рис.5,б), акустической раковиной и козырьком (рис.5,в).

Неудовлетворительным в акустическом отношении являлся знаменитый зал Альберт-холл в Лондоне шириной 56 м при высоте 39 м. Ввиду необычайно большой высоты зала разница в пути между прямым звуком и звуками, отраженными от потолка, достигала 60 м, что давало запаздывание почти на 200 мс. Центр кривизны вогнутого потолка находился в зоне, занятой слушателями, что порождало сильное эхо.

Примером неудачного акустического решения может служить Большой зал Центрального театра Российской армии (ЦТРА). Основные недостатки зала: большая ширина, равная в середине зала 42 м, и чрезмерно высокий потолок - у портала 18 м над планшетом сцены (рис.6). Отражения от боковых стен не приходят в центральную часть зала, а первые отражения от потолка поступают в середину партера с запаздыванием более 35 мс. В результате разборчивость речи в партере низкая, несмотря на близость актеров к публике. Форма задней стены зала и парапета балкона является частью окружности, центр которой расположен на авансцене в точке О. Звуки, отраженные от задней стены и парапета балкона, возвращаются в эту же точку и прослушиваются как сильное эхо, ибо запаздывание превышает 50 мс. При перемещении актера в точку И сопряженные фокусы И" и И" смещаются в партер. В результате эхо возникает в первых рядах партера.

Когда-то хорошей акустикой отличался актовый зал МТУСИ, где даже проводились симфонические концерты, транслировавшиеся по радио. Акустические условия значительно ухудшились после косметического ремонта зала. Была изменена конструкция ограждения балкона, в глубине которого был поставлен отражающий щит. Сильные отражения от парапета и щита ухудшили звучание в партере. Из-за больших запаздываний снизилась разборчивость речи.

Примером неудачного акустического решения является и Центральный концертный зал гостиницы "Россия" в Москве. Квадратная в плане форма зала привела к обеднению спектра собственных частот, низкий потолок создает малую задержку первых отражений, а большая ширина зала приводит к тому, что отражения от стен не попадают в первую половину партера. Трижды пытались улучшить звучание заменой звукопоглощающих материалов и их размещением в зале. Однако скомпенсировать заведомо неудачную исходную форму зала не удалось.

Даже в помещениях с правильно выбранными формой и линейными размерами, пропорции которых приближаются к "золотому сечению", обнаруживаются недостатки звучания, устранение которых занимает много времени, сил и средств. В тщательной подготовке к нормальной эксплуатации нуждаются студии звукового и телевизионного вещания. Примером может служить комплекс работ по подготовке студии N5 Государственного дома радиовещания и звукозаписи (ГДРЗ). Студия предназначена для исполнения произведений крупных форм с участием симфонического оркестра и хора в присутствии слушателей. Ее линейные размеры (29,8 х 20,5 х 14 м) почти соответствуют "золотому сечению", расчетное время реверберации на средних частотах 2,3 с. Ввиду большой высоты и ширины время прихода начальных отражений не оптимально. Для уменьшений длины путей отраженных лучей над местом расположения оркестра и на боковых стенах были укреплены отражающие панели. Потребовалось несколько раз изменять положение панелей и уменьшать площадь звукопоглощающих конструкций, прежде чем музыканты и звукорежиссеры признали качество звучания хорошим. Из этого примера видно, насколько тонкой и скрупулезной является акустическая настройка помещений.

Встречаются залы, рассчитанные на небольшое количество слушателей, соответственно небольшой площади и невысокие. Авторы их, по-видимому, полагали, что при небольших размерах зала "все будет хорошо слышно". В действительности в таких залах на слушательских местах образуется плотная структура начальных отражений. Из-за этого при небольшом времени реверберации звучание оказывается "плоским", подобно звучанию на открытом воздухе, а при большом времени реверберации теряется "прозрачность" звучания, начинается маскировка последующих музыкальных звуков предыдущими.

Также неудовлетворительны большей частью так называемые актовые залы. Они предназначаются для собраний, т.е. для звучания речи. Низкий потолок, гладкие параллельные стены, лишенные акустической отделки порождают неоптимальные начальныфяе отражения. Попытки проводить в них концерты не приносят успеха. Музыка звучит в них плохо. Хуже всего, что концерты в таких залах портят публику. Ниже всякой критики акустика так называемых "концертно-спортивных" залов.

В нашей стране большой вред качеству театральных и концертных залов принесла "борьба с архитектурными излишествами". "Излишествами" были объявлены все звукорассеивающие и звукопоглощающие конструкции и даже мягкая обивка кресел, призванная служить эквивалентом отсутствующих зрителей. В результате - на слушательских местах плохая структура начальных отражений, невысокая диффузность, а при частичном заполнении - чрезмерная "гулкость".

Лучшие залы . Непревзойденными по качеству звучания остаются Колонный зал Дома союзов, Большой и Малый залы Московской консерватории, Большой зал Санкт-Петербургской филармонии и некоторые другие залы старой постройки. К достижениям отечественной архитектурной акустики следует отнести зрительные залы Детского музыкального театра, Театра им. Евг. Вахтангова, Московского драматического театра им. А.С. Пушкина, Дворца культуры ЗиЛ, студии Государственного дома звукозаписи, ателье записи звука и зал прослушивания "Мосфильма". При их проектировании и строительстве были учтены положения и рекомендации отечественных и зарубежных акустиков.

В этих залах соблюдены требования геометрической акустики: рационально выбраны форма и размеры, что обеспечило высокую степень диффузности поля и оптимизацию времен запаздывания начальных отражений. В каждом конкретном случае выбраны свои архитектурно-планировочные решения. Залам сравнительно небольшой ширины придана форма прямоугольного параллелепипеда. Таковы Большой и Малый залы Московской консерватории, Большой зал московского Дома ученых. При небольшой ширине количество отражений, приходящих на места слушателей, быстро нарастает со временем и в завершающей части процесса реверберации настолько велико, что обеспечивает хорошую диффузность поля. В залах большой ширины (Колонный зал Дома союзов, Большой зал Санкт-Петербургской филармонии) введены звукорассеивающие конструкции в виде ряда колонн. В современных залах большой вместимости хорошего рассеяния звуков достигают членением стен и потолка и установкой крупных рассеивающих поверхностей на стенах. Важное значение имеет материал, которым отделаны стены и потолок. Наилучшим является дерево. Звучание музыки в залах, отделанных деревом, отличается красивой тембральной окраской. Наоборот, совершенно противопоказаны железобетонные конструкции, особенно тонкие, и штукатурка по сетке рабица. Звуки, отраженные от этих поверхностей, обладают неприятным "металлическим" оттенком.

Заключение Три рассмотренные теории с разных сторон объясняют акустические процессы, происходящие в помещениях. Из них только одна - статистическая - позволяет определить численно важную величину, характеризующую акустические свойства помещения - время реверберации. Следует лишь сознательно, критически относиться к получаемой числовой оценке, понимать, что в большинстве случаев, особенно при рассмотрении крупных помещений, она носит ориентировочный характер.

По современным воззрениям принято разделять процесс отзвука, реверберации на две части: начальные, сравнительно редкие запаздывающие импульсы, и более уплотняющаяся во времени последовательность импульсов. Первую часть отзвука оценивают с позиций геометрической (лучевой) теории, вторую - с позиций статистической теории.

Геометрическая теория более приложима к анализу акустических процессов в помещениях больших размеров - концертных и театральных залах, крупных студиях. Оптимальные размеры зала (студии) определяют на основе анализа начальных отражений. При проектировании больших помещений расчет времени реверберации может дать результат, значительно отличающийся от реального, и главное - эта величина не позволяет полностью оценить акустическое качество помещения. В такой оценке главную роль играют начальные отражения. Правильное временное соотношение начальных отражений обеспечивает высокое качество звучания даже тогда, когда время реверберации отличается от оптимального.

Статистическая и волновая теории особенно применимы к помещениям сравнительно малых размеров, например к студиям звукового вещания и аудиториям различного назначения. Результаты этих теорий как бы дополняют друг друга. Первая дает возможность оценить время реверберации, вторая - рассчитать спектр собственных (резонансных) частот, скорректировать размеры помещения так, чтобы спектр собственных частот в области нижних частот был более равномерным.

Было бы очень интересно и важно объединить положения акустических теорий, создать единую теорию, объясняющую с общих позиций сложные акустические процессы, протекающие в помещениях разного назначения, разной формы и разных размеров. Но пока это не достигнуто, остается сознательно использовать существующие теории и добиваться с их помощью наилучших решений.