Что такое tcp подключения. Протокол TCP. Что есть MAC-адрес

9.5.1.В протоколе TCP соединения устанавливаются с помощью “тройного рукопожатия” (“three-way handshake”). Чтобы установить соединение, одна сторона (например, сервер) пассивно ожидает входящего соединения, выполняя примитивы LISTEN и ACCEPT, либо указав конкретный источник, либо не указав никого конкретно.

Другая сторона (например, клиент) выполняет примитив CONNECT, указывая IP-адрес и порт, с которым он хочет установить соединение, максимальный размер ТСР - сегмента и, по желанию, некоторые данные пользователя (например, пароль). Примитив «CONNECT» посылает ТСР-сегмент с установленным битом SYN u сброшенным битом АСК и ждет ответа.

Когда этот сегмент прибывает в пункт назначения, TCP-сущность проверяет, выполнил ли какой-нибудь процесс примитив «LISTEN», указав в качестве параметра тот же порт, который содержится в поле «Порт получателя». Если такого процесса нет, она отвечает отправкой сегмента с установленным битом RST для отказа от соединения.

Если какой-либо процесс ожидает соединения на данном порту, то входящий ТСР-сегмент вручается этому процессу. Затем процесс может принять соединение или отказаться от него. Если процесс принимает соединение, он отсылает в ответ подтверждение. Последовательность ТСР-сегментов, посылаемых в нормальном случае, показана на рисунке106 а. Обратите внимание, что сегмент с установленным битом SYN потребляет один байт пространства порядковых номеров, чтобы не было неоднозначности в их подтверждениях.

Если два хоста одновременно попытаются установить соединение друг с другом, используя одну и ту же пару сокетов, то будет установлено лишь одно соединение, так как пара конечных точек однозначно определяет соединение. Последовательность событий показана на рисунке 106 б.

Рисунок 106- Установка TCP-соединения в нормальном случае (а); столкновение вызовов (б)

Начальное значение порядкового номера не равно нулю. Используется схема, основанная на часах, тикающих каждые 4 мкс. Для большей надежности хосту после сбоя запрещается перезагружаться ранее, чем через 120 с (максимальное время жизни пакета), чтобы гарантировать, что ни один пакет от прежних соединений не бродит где-нибудь в Интернете.

9.5.2 Хотя TCP-соединения являются дуплексными, чтобы понять, как происходит их разъединение, лучше считать их парами симплексных соединений. Каждое симплексное соединение разрывается независимо от своей пары.

Для того чтобы установить соединение, необходимо 3 сегмента, а для того чтобы разорвать - 4. Это объясняется тем, что TCP соединение может быть в наполовину закрытом состоянии. Так как TCP соединение полнодуплексное (данные могут передвигаться в каждом направлении независимо от другого направления), каждое направление должно быть закрыто независимо от другого. Правило заключается в том, что каждая сторона должна послать FIN, когда передача данных завершена. Когда TCP принимает FIN, он должен уведомить приложение, что удаленная сторона разрывает соединение и прекращает передачу данных в этом направлении. FIN обычно отправляется в результате того, что приложение было закрыто.

Получение FIN означает только, что в этом направлении прекращается движение потока данных TCP, получивший FIN может все еще посылать данные. Несмотря на то, что приложение все еще может посылать данные при наполовину закрытом TCP соединении, на практике только некоторые (совсем немного) TCP приложения используют это. Обычным является тот сценарий, который показан на рисунке 107.

Можно сказать, что та сторона, которая первой закрывает соединение (отправляет первый FIN), осуществляет активное закрытие, а другая сторона (которая приняла этот FIN) осуществляет пассивное закрытие. Обычно одна сторона осуществляет активное закрытие, а другая - пассивное, однако в обе стороны могут осуществить активное закрытие "Одновременное закрытие".

Когда сервер получает FIN, он отправляет назад ACK с принятым номером последовательности плюс один. На FIN тратится один номер последовательности, так же как на SYN. В этот момент TCP сервер также доставляет приложению признак конца файла (end-of-file) (чтобы выключить сервер). Затем сервер закрывает свое соединение, что заставляет его TCP послать FIN, который клиент должен подтвердить (ACK), увеличив на единицу номер принятой последовательности.

На рисунке 105 показан типичный обмен сегментами при закрытии соединения. Номера последовательности опущены. На этом рисунке FIN посылаются из-за того, что приложения закрывают свои соединения, тогда как ACK для этих FIN генерируется автоматически программным обеспечением TCP.

Соединения обычно устанавливаются клиентом, то есть первый SYN двигается от клиента к серверу. Однако любая сторона может активно закрыть соединение (послать первый FIN). Часто, однако, именно клиент определяет, когда соединение должно быть разорвано, так как процесс клиента в основном управляется пользователем, который вводит что-нибудь подобное "quit", чтобы закрыть соединение.

Рисунок 107 - Обычный обмен сегментами при закрытии соединения.

С одной стороны (часто, но не всегда, со стороны клиента) осуществляется активное закрытие, при этом посылается первый FIN. Также возможно для обеих сторон осуществить активное закрытие, так как протокол TCP позволяет осуществить одновременное закрытие (simultaneous close).

При разъединении оба конца переходят от состояния «Установлено» (ESTABLISHED) к состоянию «Ожидание FIN 1» (FIN WAIT 1) , когда приложение выдает сигнал к закрытию. При этом оба посылают FIN, которые возможно встретятся где-нибудь в сети. Когда FIN принят, на каждом конце происходит переход из состояния FIN WAIT 1 в состояние «Закрываю» (CLOSING) и с каждой стороны посылается завершающий ACK. Когда каждый конец получает завершающий ACK, состояние меняется на TIME WAIT. На рисунке 108 показаны изменения состояний.

Рисунок 108 - Обмен сегментами в процессе одновременного закрытия.

При одновременном закрытии происходит обмен таким же количеством пакетов, как и при обычном закрытии.

Чтобы избежать проблемы двух армий, используются таймеры. Если ответ на посланный FIN-ceruem не приходит в течение двух максимальных интервалов времени жизни пакета, отправитель FIN-сегмеита разрывает соединение. Другая сторона в конце концов заметит, что ей никто не отвечает, и также разорвет соединение. Хотя такое решение и не идеально, учитывая недостижимость идеала, при­ходится пользоваться тем, что есть. На практике проблемы возникают довольно редко.

9.5.3 TCP предоставляет возможность одному участнику соединения прекратить передачу данных, однако все еще получать данные от удаленной стороны. Это называется наполовину закрытый TCP. Немногие приложения могут пользоваться этой возможностью.

Чтобы использовать эту характеристику программного интерфейса, необходимо предоставить возможность приложению сказать: "Я закончило передачу данных, поэтому посылаю признак конца файла (end-of-file) (FIN) на удаленный конец, однако я все еще хочу получать данные с удаленного конца до тех пор, пока он мне не пошлет признак конца файла (end-of-file) (FIN)."

На рисунке 109 показан стандартный сценарий для полузакрытого TCP. Мы показали клиента с левой стороны, он инициирует полузакрытый режим, однако это может сделать любая сторона. Первые два сегмента одинаковы: FIN от инициатора, за ним следует ACK и FIN от принимающего. Однако дальше сценарий будет отличаться от того, который приведен на рисунке 108, потому что сторона, которая приняла приказ "полузакрыть", может все еще посылать данные. На рисунке 109 показан только один сегмент данных, за которым следует ACK, однако в этом случае может быть послано любое количество сегментов данных. Когда конец, который получил приказ "полузакрыть", осуществил передачу данных, он закрывает свою часть соединения, в результате чего посылается FIN, при этом признак конца файла доставляется приложению, которое инициировало "полузакрытый" режим. Когда второй FIN подтвержден, соединение считается полностью закрытым.

Рисунок 109 - TCP в полузакрытом режиме.

9.5.4 Этапы, необходимые для установки и разрыва соединения, могут быть представлены в виде диаграммы конечных состояний, 11 состояний которой перечислены в таблице 11. В каждом состоянии могут происходить разрешенные и запрещенные события. В ответ на какое-либо разрешенное событие может осуществляться определенное действие. При возникновении запрещенных событий сообщается об ошибке. Каждое соединение начинается в состоянии CLOSED (закрытое). Оно может покинуть это состояние, предпринимая либо активную (CONNECT), либо пассивную (LISTEN) попытку открыть соединение. Если противоположная сторона предпринимает противоположные действия, соединение устанавливается и переходит в состояние ESTABLISHED. Инициатором разрыва соединения может выступить любая сторона. По завершении процесса разъединения соединение возвращается в состояние CLOSED.

Таблица 11. - Состояния, используемые в диаграмме конечных состояний, управляющей TCP-соединением

Состояние

Описание

Закрыто. Соединение не является активным и не находится в процессе установки

Ожидание. Сервер ожидает входящего запроса

Прибыл запрос соединения. Ожидание подтверждения

Запрос соединения послан. Приложение начало открывать соединение

Установлено. Нормальное состояние передачи данных

Приложение сообщило, что ему больше нечего передавать

Состояние

Описание

Другая сторона согласна разорвать соединение

Обе стороны попытались одновременно закрыть соединение

Другая сторона инициировала разъединение

Ожидание, пока в сети не исчезнут все пакеты

Диаграмма конечных состоянии показана на рисунке 110. Обычный случаи клиента, активно соединяющегося с пассивным сервером, показан жирными линиями - сплошными для клиента и пунктиров для сервера. Тонкие линии обозначают необычные последовательности событий. Каждая линия на рисунке 110 маркирована парой событие/действие. Событие может быть либо обращением пользователя к системной процедуре (CONNECT, LISTEN, SEND или CLOSE), либо прибытием сегмента (SYN, FIN, ACK или RST), либо, в одном случае, истекшим периодом ожидания, равным двойному времени жизни пакетов. Действие может состоять в отправке управляющего сегмента (SYN, FIN или RST) или может не предприниматься никакого действия, что обозначается прочерком. В скобках приводятся комментарии.

Диаграмму легче всего понять, сначала следуя по пути клиента (сплошная жир­ная линия), затем по пути сервера (пунктир). Когда приложение на машине клиента вызывает примитив CONNECT, локальная TCP-сущность создает запись соединения, помечает его состояние как

SYN SENT посылает, SYN сегмент. Несколько приложений одновременно могут открыть несколько соединений, поэтому свое состояние, хранящееся в записи соединения, есть у каждого отдельного соединения. Когда прибывает сегмент SYN + ACK, TCP-сущность посылает последний ACK-сегмент «тройного рукопожатия» и переключается в состояние ESTABLISHED. В этом состоянии могут пересылаться и получаться данные.

На рисунке 110 жирной сплошной линией показан нормальный путь клиента. Пунктиром показан путь сервера. Тонкими линиями обозначены необычные события

Рисунок 110 - Диаграмма конечных состояний TCP-соединения.

Когда у приложения больше нет данных для передачи, оно выполняет прими­тив CLOSE, заставляющий локальную TCP-сущность послать F/N-сегмент и ждать ответного ACK-сегмента (пунктирный прямоугольник с пометкой «активное разъединение»). Когда прибывает подтверждение, происходит переход в состояние FIN WAIT 2, и одно направление соединения закрывается. Когда приходит встречный FIN-сегмент, в ответ на него также высылается подтверждение, и второе направление соединения также закрывается. Теперь обе стороны соединения закрыты, но TCP-сущность выжидает в течение времени, равного максимальному времени жизни пакета, чтобы гарантировать, что все пакеты этого соединения больше не перемещаются по сети, даже в том случае, если подтверждение было потеряно. Когда этот период ожидания истекает, TCP-сущность удаляет запись о соединении.

Рассмотрим теперь управление соединением с точки зрения сервера. Сервер выполняет примитив LISTEN и переходит в режим ожидания запросов соединения. Когда приходит SYN сегмент, в ответ на него высылается подтверждение, после чего сервер переходит в состояние SYNRCVD (запрос соединения получен). Когда в ответ на SYN-подтверждение сервера от клиента приходит ACK-сегмент, процеду­ра «тройного рукопожатия» завершается и сервер переходит в состояние ESTABLISHED. Теперь можно пересылать данные.

Когда клиент передал достаточное количество данных, он выполняет примитив CLOSE, в результате чего FIN-сегмент прибывает на сервер (пунктирный прямоугольник, обозначенный как пассивное разъединение). Теперь сервер выполняет примитив CLOSE, a FIN-сегмент посылается клиенту. Когда от клиента прибывает подтверждение, сервер разрывает соединение и удаляет запись о соединении.

Протокол TCP обеспечивает надёжную доставку информации в том смысле, что он организует прямое подтверждение (квитирование) корректного приёма информации получателем.

В процессе доставки данные могут быть утеряны или искажены, поэтому получатель, если он принял блок, проверяет его корректность путем расчёта контрольной суммы. Если последняя правильна (данные получены без искажений), то адресат отправляет квитанцию - подтверждение приём. Если контрольная сумма не сходится, то квитанция не высылается.

Ожидание квитанции может быть бесконечным. Для выхода из такого состояния используется механизм тайм-аута. Сущность его заключается в том, что отправитель, передав в канал блок, включает счетчик времени и ожидает квитанцию в течение некоторого временного интервала (тайм-аута) с момента передачи. По истечении этого времени отправитель считает, что пакет утерян или искажен, и повторяет передачу (положительное квитирование с повторной передачей – positive acknowledgment with retransmission).

В таблице 12. сведены состояния TCP соединения с указанием состояний битов управления на каждом из этапов состояния соединения, А также указаны содержания полей: «порядковый номер» N(S) и «Номер подтверждения» N(R). Поле «номер» указывает на последовательность передачи блоков.

Таблица 12– Состояния TCP соединения

Этап соедине-ния

Направление передачи и состояние битов управления

Состояние полей номеров

Прямое направле-ние

Обратное направле-ние

Установ-ление соедине-

Нормальный

Столкнове-ние вызовов

Передача данных

Простая передача

ACK данные

ACK данные

Групповая пересылка (групповое квитирование)

ACK данные

ACK данные

ACK данные

ACK данные

ACK данные

ACK данные

Разрыв соедине-ния

Нормальный

Одновремен-ное закрытие

Наполовину закрытый TCP

ACK данные

ACK данные

9.5.5 Ожидание квитанции может быть бесконечным. Для выхода из такого состояния используется механизм тайм-аута. Сущность его заключается в том, что отправитель, передав в канал блок, включает счетчик времени и ожидает квитанцию в течение некоторого временного интервала (тайм-аута) с момента передачи. По истечении этого времени отправитель считает, что пакет утерян или искажен, и повторяет передачу (положительное квитирование с повторной передачей – positive acknowledgment with retransmission).

В Internet (ввиду глобальности сети) нельзя заранее принять конкретное усредненное значение длительности тайм-аута. Если тайм-аут настроен на задержку, оптимальную для локальной сети, то скорее всего о будет слишком коротким для информационного обмена через глобальные сети. Большое же время ожидания снижает эффективность использования пропускной способности сети, поскольку отправитель может слишком долго ждать подтверждений.

TCP управляет четырьмя таймерами для каждого соединения:

Таймер повторной передачи (retransmission) используется в том случае, когда ожидается подтверждение от удаленного конца.

Устойчивый (persist) таймер, в течение которого сохраняется информация о размере окна передачи, даже если удаленный конец закрыл свое приемное окно.

Таймер времени жизни (keepalive) определяет, когда можно считать, что удаленный конец вышел из строя или перезагрузился.

Таймер 2MSL определяет время, в течение которого соединение может быть в состоянии «TIME WAIT».

Основой тайм-аутов и повторных передач TCP является расчет времени возврата (RTT - round-trip time), соответствующего данному соединению. Мы ожидаем, что оно может изменяться со временем, так как может измениться маршрут или загрузка сети. TCP должен отследить эти изменения и соответственно модифицировать тайм-ауты.

Состояние «Время ожидания» (TIME WAIT) также иногда называется состоянием ожидания 2MSL (MSL - maximum segment lifetime). В каждой реализации выбирается значение для максимального времени жизни сегмента MSL. Это максимальное время, в течение которого сегмент может существовать в сети, перед тем как он будет отброшен. Мы знаем, что это время ограничено, так как TCP сегменты передаются посредством IP датаграмм, а каждая IP датаграмма имеет поле TTL, которое ограничивает время ее жизни.

При использовании MSL действуют следующие правила: когда TCP осуществляет активное закрытие и посылает последний сегмент, содержащий подтверждение (ACK), соединение должно остаться в состоянии TIME WAIT на время равное двум MSL. Это позволяет TCP повторно послать последний ACK в том случае, если первый ACK потерян (в этом случае удаленная сторона отработает тайм-аут и повторно передаст свой конечный FIN).

Другое назначение ожидания 2MSL заключается в том, что пока TCP соединение находится в ожидании 2MSL, пара сокетов, выделенная для этого соединения (IP адрес клиента, номер порта клиента, IP адрес сервера и номер порта сервера), не может быть повторно использована. Это соединение может быть использовано повторно только, когда истечет время ожидания 2MSL.

К сожалению, большинство реализаций подчиняются более жестким требованиям. По умолчанию локальный номер порта не может быть повторно использован до тех пор, пока этот номер порта является локальным номером порта пары сокетов, который находится в состоянии ожидания 2MSL. Ниже мы рассмотрим примеры общих требований.

Некоторые реализации и API предоставляют средства, которые позволяют обойти эти ограничения. С использованием API сокет может быть указана опция сокета «SO REUSEADDR». Она позволяет вызывающему назначить себе номер локального порта, который находится в состоянии 2MSL, однако мы увидим, что правила TCP не позволяют этому номеру порта быть использованным в соединении, которое находится в состоянии ожидания 2MSL.

Каждый задержанный сегмент, прибывающий по соединению, которое находится в состоянии ожидания 2MSL, отбрасывается. Так как соединение определяется парой сокетов в состоянии 2MSL, это соединение не может быть повторно использовано до того момента, пока мы не сможем установить новое соединение. Это делается для того, чтобы опоздавшие пакеты не были восприняты как часть нового соединения.

Как мы уже показали, обычно клиент осуществляет активное закрытие и входит в режим «TIME WAIT». Сервер обычно осуществляет пассивное закрытие и не проходит через режим «TIME WAIT». Можно сделать вывод, что если мы выключим клиента и немедленно его перестартуем, этот новый клиент не сможет использовать тот же самый локальный номер порта. В этом нет никакой проблемы, так как клиенты обычно используют динамически назначаемые порты и не заботятся, какой динамически назначаемый порт используется в настоящее время.

Однако, с точки зрения сервера, все иначе, так как сервера используют заранее известные порты. Если мы выключим сервер, который имеет установленное соединение, и постараемся немедленно перестартовать его, сервер не может использовать свой заранее известный номер порта в качестве конечной точки соединения, так как этот номер порта является частью соединения, находящегося в состоянии ожидания 2MSL. Поэтому может потребоваться от 1 до 4 минут, перед тем как сервер будет перестартован.

Состояние ожидания 2MSL предоставляет защиту от опоздавших пакетов, принадлежащих ранним соединениям, при этом они не будут интерпретироваться как часть нового соединения, которое использует те же самые локальный и удаленный IP адреса и номера портов. Однако это работает только в том случае, если хост с соединением в состоянии 2MSL не вышел из строя.

Что если хост с портами в состоянии 2MSL вышел из строя, перезагрузился во время MSL и немедленно установил новые соединения с использованием тех же самых локальных и удаленных IP адресов и номеров портов, соответствующих локальным портам, которые были в состоянии 2MSL перед поломкой? В этом случае опоздавшие сегменты из соединения, которое существовало перед поломкой, могут быть ошибочно интерпретированы как принадлежащие новому соединению, созданному после перезагрузки. Это может произойти вне зависимости от того, какой исходный номер последовательности выбран после перезагрузки.

Чтобы защититься от подобных нежелательных сценариев, RFC 793 указывает, что TCP не должен создавать новые соединения до истечения MSL после момента загрузки. Это называется тихое время (quiet time).

В некоторых реализациях хосты ожидают даже дольше, чем время MSL после перезагрузки.

В состоянии «FIN WAIT 2» (Ожидание и подтверждение FIN) мы посылаем наш FIN, а удаленная сторона подтверждает его. Если мы не находимся в состоянии полузакрытого соединения, то ожидаем от приложения на удаленном конце, что оно опознает прием признака конца файла и закроет свою сторону соединения, причем пошлет нам FIN. Только когда процесс на удаленном конце осуществит это закрытие, наша сторона перейдет из режима «FIN WAIT 2» в режим «TIME WAIT».

Это означает, что наша сторона соединения может остаться в этом режиме навсегда. Удаленная сторона все еще в состоянии «CLOSE WAIT» и может оставаться в этом состоянии всегда, до тех пор, пока приложение не решит осуществить закрытие.

9.5.6 Максимальный размер сегмента (MSS) это самая большая порция данных, которую TCP пошлет на удаленный конец. Когда соединение устанавливается, каждая сторона может объявить свой MSS. IP дейтаграмма, которая получится в результате, обычно на 40 байт больше: 20 байт отводится под TCP заголовок и 20 байт под IP заголовок.

Когда соединение устанавливается, каждая сторона объявляет MSS, которой она собирается принимать. (Опция MSS может быть использована только в SYN сегменте.) Если одна сторона не принимает опцию MSS от другой стороны, используется размер по умолчанию в 536 байт. (В этом случае, при 20-байтном IP заголовке и 20-байтном TCP заголовке, размер IP датаграммы будет составлять 576 байт.)

В общем случае, чем больше MSS тем лучше, до тех пор пока не происходит фрагментация. Большие размеры сегмента позволяют послать больше данных в каждом сегменте, что уменьшает относительную стоимость IP и TCP заголовков. Когда TCP отправляет SYN сегмент, либо когда локальное приложение хочет установить соединение, или когда принят запрос на соединение от удаленного хоста, может быть установлено значение MSS равное MTU исходящего интерфейса минус размер фиксированных TCP и IP заголовков. Для Ethernet MSS может достигать 1460 байт. При использовании инкапсуляции IEEE 802.3 MSS может быть до 1452 байт.

Если IP адрес назначения "нелокальный", MSS обычно устанавливается по умолчанию - 536. Является ли локальным или нелокальным конечный пункт назначения можно следующим образом. Пункт назначения, IP адрес которого имеет тот же самый идентификатор сети и ту же самую маску подсети, что и у отправителя, является локальным. Пункт назначения, IP адрес которого полностью отличается от идентификатора сети, является нелокальным, Пункт назначения с тем же самым идентификатором сети, однако с другой маской подсети может быть как локальным, так и нелокальным. Большинство реализаций предоставляют опцию конфигурации, которая позволяет системному администратору указать, какие подсети являются локальными, а какие нелокальными. Установка этой опции определяет максимальный анонсируемый MSS (который по величине может достигать MTU исходящего интерфейса), иначе используется значение по умолчанию равное 536.

MSS позволяет хосту устанавливать размер дейтаграмм, который будет отправляться удаленной стороной. Если принять во внимание тот факт, что хост также ограничивает размер дейтаграмм, которые он отправляет, это позволяет избежать фрагментации, когда хост подключен к сети с меньшим MTU.

9.5.7.В TCP заголовке существует бит, называемый RST, что означает "сброс" (reset). В общем случае сигнал "сброс" (reset) посылается TCP в том случае, если прибывающие сегменты не принадлежат указанному соединению. (термин "указанное соединение" (referenced connection), который обозначает соединение, идентифицируемое IP адресом назначения и номером порта назначения, а также IP адресом источника и номером порта источника.(В RFC 793 - называется "сокет".)

Самый общий случай, при котором генерируется сброс (reset), это когда запрос о соединении прибывает и при этом не существует процесса, который слушает порт назначения. В случае UDP, если дейтаграмма прибывает на неиспользуемый порт назначения - генерируется ошибка ICMP о недоступности порта. TCP вместо этого использует сброс.

Рассмотрим поле номера последовательности и поле номера подтверждения в сбросе. Так как бит подтверждения (ACK) не был установлен в прибывшем сегменте, номер последовательности сброса установлен в 0, а номер подтверждения установлен во входящий исходный номер последовательности (ISN) плюс количество байт данных в сегменте. Несмотря на то, что в прибывшем сегменте не присутствует реальных данных, бит SYN логически занимает 1 байт в пространстве номера последовательности; таким образом, в этом примере номер подтверждения в сбросе устанавливается в ISN плюс длина данных (0) плюс один SYN бит.

Обычный метод, используемый для разрыва соединения, заключается в том, что одна из сторон посылает FIN. Иногда это называется правильным освобождением (orderly release), так как FIN посылается после того, как все данные, ранее поставленные в очередь, были отправлены, и обычно при этом не происходит потеря данных. Однако существует возможность прервать соединение, послав сброс (reset) вместо FIN. Иногда это называется прерывающим освобождением (abortive release).

Подобный разрыв соединения предоставляет приложению две возможности:

Любые данные, стоящие в очереди, теряются, и сброс отправляется немедленно;

Сторона, принявшая RST, может сказать, что удаленная сторона разорвала соединение, вместо того чтобы закрыть его обычным образом. Программный интерфейс (API), который используется приложением, должен предоставлять способ сгенерировать подобный сброс вместо нормального закрытия.

9.5.8 Определение полуоткрытого соединения

Считается, что TCP соединение полуоткрыто, если одна сторона закрыла или прервала соединение без уведомления другой стороны. Это может произойти в любое время, если один из двух хостов выйдет из строя. Так как какое-то время не будет попыток передать данные по полуоткрытому соединению, одна из сторон будет работать, до тех пор, пока не определит, что удаленная сторона вышла из строя.

Еще одна причина, по которой может возникнуть полуоткрытое соединение, заключается в том, что на хосте клиента было выключено питание, вместо того чтобы погасить приложение клиента, а затем выключить компьютер. Это происходит когда, например, Telnet клиент запускается на PC, и пользователи выключают компьютер в конце рабочего дня. Если в момент выключения PC не осуществлялась передача данных, сервер никогда не узнает, что клиент исчез. Когда пользователь приходит на следующее утро, включает свой PC и стартует новый клиент Telnet, на хосте сервера стартует новый сервер. Из-за этого на хосте сервера может появиться очень много открытых TCP соединений.

Прежде чем данные могут быть отправлены между двумя хостами по протоколу TCP , должно быть установлено соединение. Один хозяин, называется сервер, слушает запросы на подключение. Хост запрашивает соединение и называется клиентом. Для запроса на подключение, клиент отправляет сегмент TCP с указанием своего номера порта и что он хочет подключиться. SYN (синхронизация порядковых номеров), флаг установлен, последовательность исходных данных клиента указывает номер.

Для предоставления связи, сервер отвечает на сегмент, в котором содержится заголовок исходной последовательности данных номера. SYN и ACK флаги установлены. Для подтверждения получения данных клиента порядковый номер в поле подтверждения содержит это значение плюс один.
Для завершения протокола установления соединения, клиент подтверждает номер последовательности данных серверу, отправляя обратно сегмент с установленным флагом ACK и признания поля, содержащего данные сервера и порядковый номер плюс один.
TCP сегменты передаются только между клиентом и сервером, если есть данные в потоке. Происходит опрос состояния. Если линия связи выходит из строя, на конце будут знать об отказе, пока данные не будут отправлены. На практике применение тайм-аута, как правило, разрывает соединение, если определенный промежуток времени прошел без активности. Тем не менее, можно продолжить не удачную сессию, как будто ничего не произошло, если вы можете установить соединение снова. (Заметим, что это верно только если ваш провайдер предоставляет вам фиксированный IP-адрес . Если IP-адрес выделяется динамически при входе в систему, вы не сможете возобновить связь, потому что ваш сокет (который, как мы уже отмечали ранее, состоит из вашего IP-адреса и номера порта) был бы другой.
Передача данных
После того, как соединение было установлено, данные могут быть отправлены. TCP-протокол скользящего окна означает, что нет необходимости ждать когда следует признать один сегмент, прежде чем другой может быть отправлен. Подтвержения отправляются только в случае необходимости немедленно или через определенный истекший интервал. Это делает TCP эффективным протокол для массовой передачи данных.
Одним из примеров, когда подтверждение отправляется немедленно, когда отправитель заполнит входной буфер приемника. Управление потоком осуществляется с помощью поля размера окна в заголовке TCP . В части, содержащей признание размера окна будет равно нулю. Когда приемник снова может принимать данные, направляется второе подтверждение с указанием новых размеров окна. Такое признание называется окно обновления.
При интерактивной сессии Telnet , один введенный символ на клавиатуре может быть отправлен в своем сегменте TCP . Каждый персонаж может быть признан сегментом вступления в другую сторону. Если вводимые символы нашли свое отражение на удаленном хосте, тогда еще пара отрезков могут быть получены, первый удаленным хостом, а второй, его признания, по Telnet клиента. Таким образом, один типизированный характер может привести к четырём IP-пакетам , каждый из которых содержит 20 байт IP-заголовка , 20 байт заголовка TCP и только один байт данных, передаваемых через Интернет.
TCP имеет некоторые особенности, чтобы попытаться сделать вещи немного более эффективным. Подтверждение задержки до 500 мс может быть указано в надежде, что в течение этого времени некоторые данные могут быть направлены в другую сторону, и признание контрольных данных вместе с ней.
Неэффективность отправки многих очень маленьких сегментов уменьшается на то, что называется Nagle алгоритмом. Это указывает, что сегмент TCP содержащий меньше данных, чем рекламируемый размер окна получателя может быть отправлен только если предыдущая часть была признана. Небольшое количество данных объединяются, пока они либо равны размеру окна, или если получил признание предыдущий сегмент. Чем медленнее соединение, тем больше будет период, в течение которого данные могут быть объединены, и, следовательно, меньше отдельных сегментов TCP будет отправлено в течение занятой ссылки.
Исправление ошибок
Важным преимуществом TCP на UDP является то, что это надежный транспортный протокол передачи данных. Он может обнаружить данные которые были успешно получены на другом конце, а если не были получены, TCP может предпринять шаги, чтобы исправить ситуацию. Если ничего не помогает, он может сообщить отправкой проблемы, так что он знает, что передача не удалась.
Самой распространенной проблемой является то, что сегмент TCP потерян или поврежден. TCP занимается этим, отслеживая принятые данные, которые он посылает. Если подтверждение не получено в течение интервала определённого протоколом, данные передаются снова.
Интервал, TCP будет ждать перед повторной передачей данных и зависит от скорости соединения. Протокол контролирует время, которое обычно требуется, чтобы получить признание и использует таймер для расчета периода для ретрансляции. Если подтверждение не будет получено после повторной отправки данных один раз, он отправляется повторно, на всё возрастающих интервалах, пока не будет получен ответ или (обычно) значение применения тайм-аута превышено.
Как уже упоминалось, TCP реализует поток управления с помощью поля размера окна в заголовке. Потенциал тупиковой ситуации возникает, если приемник останавливает поток данных, установив размер окна в ноль, и сегмент окна обновления, который предназначен для запуска потока данных снова теряется. На каждом конце соединения будут остановки, ожидая, пока другие что-то сделают.
Подтверждения сами по себе не ACKed, в этом случае стратегия ретрансляции не решит проблемы. Чтобы предотвратить возникновение тупиковой ситуации, TCP посылает зонд сообщения окна через регулярные промежутки времени для запроса о его приемнике размера окна.
Закрытие соединения
Когда приходит время, чтобы закрыть соединение TCP , каждое направление потока данных должно быть закрыто в отдельности. Один конец связи посылает сегмент, в котором установлен флаг FIN (закончил передачу данных). Получение данного сегмента признают, и принимающая сторона уведомляет его применение, чтобы другая сторона закрыла соединение,потому что осталась половина соединения.
Приемник может, если пожелает, продолжать передавать данные в другом направлении. Обычно, принимающее приложение будет заставлять TCP закрывать вторую половину соединения, используя такую ​​же процедуру.

Вообще, организация соединения по протоколу TCP начинается с так называемого трехстороннего квитирования (рукопожатия).

Шаг 1. Отправка SYN пакета

Отправляется пакет с выставленным флагом SYN, что означает инициализацию сессии. Разумеется, на этом этапе будет задан порт источника и порт назначения (порт источника выбирается случайно из диапазона 1024-65535), хотя на этом участке можно выделить два диапазона ещё. Порты с 1024 до 49151 используются для проприетарных приложений, контролируется IANA (те же чуваки, которые и выделяют IP адреса). Порт назначения здесь зависит от используемой службы. Стандартные порты ssh – 22, http – 80, pop3 – 110 и т.д. Все эти порты прописаны в c:\Windows\System32\drivers\etc\services ну или аналогичный файл в Linux.

SYN

Как же выбирается этот номер? Приведу выдержку из RFC 793:

При организации нового соединения генерируется начальный порядковый номер (initial sequence number) ISN. Генерация номера основана на текущем (возможно, фиктивном) 32-битовом значении времени, в котором младший бит инкрементируется приблизительно каждые 4 микросекунды. Таким образом, цикл номеров ISN занимает около 4.55 часа. Поскольку мы предполагаем, что сегмент сохраняется в сети в течение времени, не превышающего MSL (Maximum Segment Lifetime – максимальное время жизни

сегмента), и значение MSL < 4.55 час., можно считать значения ISN уникальными.

То есть в первом пакете с битом SYN задается некий номер последовательности. На скрине выше я привел пример, видим бит SYN и ISN 2686526190 .

Шаг 2. Отправка подтверждения SYN+ACK

В ответ на этот пакет, сервер, если он не против соединения, посылает пакет с битами SYN,ACK и произвольным номером последовательности Sequence Number, вычисленным по похожему принципу. А поле Acknowledgment Number будет равняться полю ISN+1.


На примере видно, что сгенерировано число Initial Receive Sequence (IRS) = 675813843 и пакет послан как ответ AN: 2686526191 (предыдущий SN: 2686526190 + 1).

Шаг 3. Отправка подтверждения ACK

Теперь инициатору подключения не остается ничего другого, как ответить ACK и пояснить, что речь идёт об Acknowledgment number предыдущего шага IRS + 1, т.е. 675813843+1 = 675813844! А Sequence nuber остаётся неизменным, AN предыдущего пакета 2686526191.


ACK

Иначе, в переводе с TCP на русский это выглядит так:

  1. Клиент: Кодовое слово “1” (Sequence number), сервер, давай мутить! (SYN);
  2. Сервер: Моё кодовое слово “5” (Sequence number), клиент, на твой запрос по кодовому слову “1” (Acknowledgment number) отвечаю (+1) ну давай мутить (SYN+ACK).
  3. Клиент: Ну хорошо! Раз ты, сервер, получай мой окончательный ответ ответ (ACK) на твое согласие (5+1) на мой запрос (1+1).

Всё. С этого момента соединение считается установленным. Дальнейшие пакеты будут передавать уже полезную нагрузку – данные протоколов вышестоящих уровней, например SSH.

При этому так же происходит взаимное увеличение Sequence Number у сервера и у клиента, но только уже не на 1, а на размер отправляемых данных.

Transmission Control Protocol (TCP) (протокол управления передачей) - один из основных сетевых протоколов Интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP.

Выполняет функции протокола транспортного уровня модели OSI.

TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета (см. также T/TCP). В отличие от UDP гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

Когда осуществляется передача от компьютера к компьютеру через Интернет, TCP работает на верхнем уровне между двумя конечными системами, например, веб-обозреватель и веб-сервер. Также TCP осуществляет надежную передачу потока байтов от одной программы на некотором компьютере к другой программе на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

TCP устанавливает соединения, которые должны быть созданы перед передачей данных. TCP соединение можно разделить на 3 стадии:

Установка соединения

Передача данных

Завершение соединения

Установка соединения

Процесс начала сеанса TCP называется «тройным рукопожатием».

1. Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN.

2. Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK.

3. Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED.

Передача данных

При обмене данными приемник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приемник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтвержденных последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируются, но номер подтвержденной последовательности не изменяется. Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приемник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приемника передающей стороне в поле «окно» указывается текущий размер приемного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приемник. Если приемник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, до тех пор пока приемник не сообщит о большем размере окна.

Завершение соединения

Завершение соединения можно рассмотреть в три этапа:

Посылка серверу от клиента флагов FIN и ACK на завершение соединения.

Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.

После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.


На транспортном уровне стека TCP/IP используются два основных протокола: TCP и UDP . Общее представление о функциях транспортного уровня можно получит в соответствующей статьей. В данном тексте речь пойдёт о протоколе TCP (Transmission Control Protocol), который используется для обеспечения надёжной доставки данных на транспортном уровне.

Существуют общие задачи транспортного уровня, с которыми справляется как TCP, так и UDP . Основных задач собственно две: сегментация данных , приходящих с уровня приложений и адресация приложений (передающего и принимающего) при помощи портов. Подробнее об этом можно прочесть в статье, посвященной транспортному уровню .

Помимо этого, TCP обеспечивает:

  • Надёжную доставку сегментов.
  • Упорядочивание сегментов при получении.
  • Работу с сессиями.
  • Контроль за скоростью передачи.

Рассмотрим эти возможности более детально.

Надёжная доставка сегментов

Под надёжной доставкой подразумевается автоматическая повторная пересылка недошедших сегментов. Каждый сегмент маркируется при помощи специального поля - порядкового номера (sequence number). После отправки некоторого количества сегментов, TCP на отправляющем узле ожидает подтверждения от получающего, в котором указывается порядковый номер следующего сегмента, который адресат желает получить. В случае, если такое подтверждение не получено, отправка автоматически повторяется. После некоторого количества неудачных попыток, TCP считает, что адресат не доступен, и сессия разрывается.

Таким образом, надёжная доставка не означает, что ваши данные дойдут в случае, если кто-то выдернул кабель из коммутатора. Она означает, что разработчик ПО, использующий TCP на транспортном уровне знает, что если сессия не разорвалась, то всё что он поручил отправить будет доставлено получателю без потерь. Существует множество данных, критичных к потере любой порции информации. Например, если вы скачиваете приложение из интернета, то потеря одного байта будет означать, что вы не сможете воспользоваться тем что скачали. По этой причине многие протоколы уровня приложений используют для транспорта TCP.

Упорядочивание сегментов при получении

Как несложно догадаться, каждый сегмент на нижний уровнях TCP/IP обрабатывается индивидуально. То есть, как минимум, он будет запакован в индивидуальный пакет. Пакеты идут по сети и промежуточные маршрутизаторы в общем случае уже ничего не знают о том, что запаковано в эти пакеты. Часто пакеты с целью балансировки нагрузки могут идти по сети разными путями, через разные промежуточные устройства, с разной скоростью. Таким образом получатель, декапсулировав их, может получить сегменты не в том порядке, в котором они отправлялись.

TCP автоматически пересоберёт их в нужном порядке используя всё то же поле порядковых номеров и передаст после склейки на уровень приложений.

Работа с сессиями

Перед началом передачи полезных данных, TCP позволяет убедиться в том, что получатель существует, слушает нужный отправителю порт и готов принимать данные для этого устанавливается сессия при помощи механизма трёхстороннего рукопожатия (three-way handshake), о котором можно прочесть в соответствующей статье. Далее, в рамках сессии передаются полезные пользовательские данные. После завершения передачи сессия закрывается, тем самым получатель извещается о том, что данных больше не будет, а отправитель извещается о том, что получатель извещён.

Контроль за скоростью передачи

Контроль за скоростью передачи позволяет корректировать скорость отправки данных в зависимости от возможностей получателя. Например, если быстрый сервер отправляет данные медленному телефону, то сервер будет передавать данные с допустимой для телефона скоростью.

Благодаря механизму скользящего окна (sliding window), TCP может работать с сетями разной надёжности. Механизм плавающего окна позволяет менять количество пересылаемых байтов, на которые надо получать подтверждение от адресата. Чем больше размер окна, тем больший объём информации будет передан до получения подтверждения. Для надёжных сетей подтверждения можно присылать редко, чтобы не добавлять трафика, поэтому размер окна в таких сетях автоматически увеличивается. Если же TCP видит, что данные теряются, размер окна автоматически уменьшается. Это связанно с тем, что если мы передали, например, 3 килобайта информации и не получили подтверждения, то мы не знаем, какая конкретно часть из них не дошла и вынуждены пересылать все три килобайта заново. Таким образом, для ненадёжных сетей, размер окна должен быть минимальным.

Механизм скользящего окна позволяет TCP постоянно менять размер окна - увеличивать его пока всё нормально и уменьшать, когда сегменты не доходят. Таким образом, в любой момент времени размер окна будет более или менее адекватен состоянию сети.

Структура TCP

Заголовок TCP сегмента имеет следующую структуру:

  • Source port и Destination port - это соответственно номера портов получателя и отправителя, идентифицирующие приложений на отправляющем и принимающем узлах.
  • Sequence number и Acknowledgment number - это порядковый номер сегмента и номер подтверждения, которые используются для надёжной доставки. Например, если отправитель шлёт сегмент с SN 100, то получатель может ответить на него ACK 101 SN200, что означает: «Я получил твой сегмент с номером 100 и жду от тебя 101-го, кстати, у меня своя нумерация. Мои номера начинаются с 200» Отправитель, в свою очередь, может ответить SN101 ACK201, что означает «Я получил от тебя сегмент с номером 200, могу принять следующий 201-ый, а вот тебе мой 101-ый сегмент, которого ты ждёшь». Ну и так далее.
  • Header length - Это четырёхбитное поле, содержащее в себе длину заголовка TCP сегмента.
  • Reserved - 6 зарезервированных на всякий случай бит.
  • Control - поле с флагами, которые используются в процессе обмена информацией и описывают дополнительное назначение сегмента. Например, флаг FIN используется для завершения соединений, SYN и ACK - для установки.
  • Window - содержит размер окна, о чём было сказано выше.
  • Checksumm - контрольная сумма заголовка и данных.
  • Urgent - признак важности (срочности) данного сегмента.
  • Options - дополнительное необязательное поле, которое может использоваться, например, для тестирования протокола.
  • В разделе данных содержатся собственно данные, полученные от протокола уровня приложений, либо их кусок, если данные пришлось разбивать.