Цифровая подстанция что. Как создают оборудование для цифровых подстанций. В стиле хай-тек

Фото: Пресс-служба Мэра и Правительства Москвы. Денис Гришкин

Подстанция обеспечит электричеством здания инновационного кластера, а также жилые дома, расположенные неподалеку.

На территории центра «Сколково» возле Можайского шоссе построили ПАО «МОЭСК». Она обеспечит энергоснабжением здания инновационного кластера, а также жилые дома и коммерческие организации, расположенные неподалеку.

«В “Сколкове” впервые в России построена инновационная цифровая подстанция. Я считаю, что это революционное событие. Это шаг в будущее электроэнергетики», — отметил . Он напомнил, что в столице насчитывается более 100 тысяч километров электрических сетей, а также работает свыше 20 тысяч подстанций.

«И от того, как будет функционировать эта огромная машина, как будут работать подстанции, как будет работать огромное сетевое хозяйство, во многом зависит стоимость и надежность электроэнергии», — добавил Мэр Москвы.

Цифровая подстанция — лишь элемент этой системы. «Дальше будет идти речь о создании цифровой сети до потребителя. Все это вместе должно дать около 30 процентов снижения текущих расходов. И, конечно, надежность будет в значительной степени повышена. Первая такая ласточка в России появилась в “Сколкове”. Надеюсь, что эта ласточка в скором времени перелетит и на территории других районов. Положит начало системной реконструкции электросетевого хозяйства», — подчеркнул Сергей Собянин.

Управление электроподстанцией ведется в цифровом виде без присутствия персонала, сообщил генеральный директор ПАО «Россети» Павел Ливинский. «Все управляющие воздействия проходят в цифровом формате передачи данных. Вся информация накапливается. Фактически речь уже идет о том, что это элементы искусственного интеллекта управления», — рассказал он.

В стиле хай-тек

Общая трансформаторная мощность электроподстанции — 160 мегаватт. Ее запуск запланирован на 30 июня. Электроподстанцию «Медведевская» должны были построить за 27 месяцев, но завершили гораздо раньше — за 18 месяцев. Таким образом, срок строительства сократился в полтора раза. Подстанция оформлена в стиле хай-тек: она гармонично впишется в будущую застройку «Сколкова».

Генподрядчик — АО «Стройтрансгаз».

Одновременно с возведением подстанции проложили кабельные линии (заходы) 110 киловольт общей протяженностью 7,6 километра.

Сделано в России

На подстанции впервые в новейшей истории установлено современное оборудование российского производства. Так, она оснащена комплектным распределительным устройством с элегазовой изоляцией (КРУЭ) 110 киловольт, рассчитанным на присоединение четырех линий. Это сердце подстанции. КРУЭ обеспечивает прием и распределение электроэнергии в сетях переменного тока. Устройство произведено в Санкт-Петербурге на предприятии «Электроаппарат».

По словам генерального директора ПАО «МОЭСК» Петра Синютина, при строительстве новой подстанции компания учитывала десятки факторов. Среди них сроки ввода новых мощностей, планы развития территорий, специфика выделенного участка земли, особенности расположения коммуникаций и так далее.

«Компоновка подстанции — вопрос технически сложный, и, как правило, для его решения применяется оборудование, хорошо зарекомендовавшее себя на других объектах. В случае с подстанцией “Медведевская” компании было удобнее поставить КРУЭ зарубежной компании, например Siemens. Оно и было изначально запланировано в проекте. Однако понимая все риски, компания “МОЭСК” взяла на себя ответственность впервые в истории современной России заказать и установить КРУЭ 110 киловольт российского производства. Разумеется, такое решение потребовало серьезной технической проработки и новых инженерных решений, однако в противном случае у отечественного предприятия не было бы шансов создать реальный российский продукт», — рассказал Петр Синютин.

В результате петербургский завод «Электроаппарат» получил реальный опыт производства и внедрения комплектного распределительного устройства с элегазовой изоляцией.

Петр Синютин добавил, что для энергетиков появление отечественного КРУЭ дает возможность полностью укомплектовывать подстанции российским оборудованием. Это снижает риски роста цен из-за курсовой разницы и нехватки запасных частей.

По качеству и надежности, а также срокам монтажа российское распределительное устройство не уступает мировым аналогам. К тому же отечественное оборудование имеет преимущество — его стоимость ниже на 30 процентов.

Понимая риски заказчика, производитель взял повышенные гарантийные обязательства на 15 лет. В течение этого периода специалисты предприятия должны будут приезжать на подстанцию для устранения любых неполадок на оборудовании в течение 24 часов. Завод увеличивает число поставляемых на подстанцию запасных частей, инструментов, приспособлений, а также организует склад всех компонентов КРУЭ.

Единая цифровая среда

Подстанция оборудована двумя масляными силовыми трансформаторами мощностью по 80 мегаватт каждый. Устройство регулирования под нагрузкой, которым они оснащена, позволяет регулировать напряжение в сети, не выключая трансформатор. Производитель — ООО «Тольяттинский трансформатор».

Кроме того, на подстанции установлены четырехсекционные распределительные устройства 20 киловольт на 20 линейных ячеек (производитель — ОАО «Самарский трансформатор»), система релейной защиты и автоматизированная система управления (производитель — ООО «НПП “Экра”»), а также энергоффективное светодиодное освещение.

Концепция подстанции предполагает отказ от устаревших аналоговых систем и создание единой цифровой среды управления и защиты. Диагностика (онлайн-мониторинг силовых трансформаторов и КРУЭ), измерения, анализ и управление питающим центром проводятся в цифровом коде без присутствия персонала.

В будущем цифровая подстанция станет ключевым компонентом интеллектуальной сети (Smart Grid).

Электросетевое хозяйство Москвы

Электросетевое хозяйство Москвы включает 103,1 тысячи километров электрических сетей, 158 питающих центров высокого напряжения (их мощность превышает 32,9 тысячи мегаватт), а также свыше 23 тысяч трансформаторных подстанций среднего напряжения.

Резерв мощности в сети составляет около 17 процентов.

Основное направление развития электрохозяйства — создание сети с напряжением 20 киловольт. Это увеличит пропускную способность распределительных сетей как минимум в два — два с половиной раза и обеспечит присоединение новых потребителей. При этом не будет дефицита мощности.

Ежегодно в городе запускаются одна-две новые высоковольтные подстанции и около 400 трансформаторных подстанций среднего напряжения.

Всего за 2012-2017 годы ввели 12 259 мегаватт трансформаторной мощности, реконструировали более 2,2 километра и построили около 7,5 тысячи километров кабельных линий.

В 2018 году запланирован ввод 1305 мегаватт трансформаторной мощности, а также строительство более 1,6 тысячи километров сетей и реконструкция 261 километра.

Уровень износа электрических сетей по сравнению с 2010 годом снизился с 65,2 процента до 56,3 процента.

ЦИФРОВАЯ

ПОДСТАНЦИЯ

ЦИФРОВАЯ

ПОДСТАНЦИЯ

ИНТЕРАКТИВНОЕ УПРАВЛЕНИЕ СИСТЕМАМИ СОБСТВЕННЫХ НУЖД ПОДСТАНЦИИ ЧЕРЕЗ СЕНСОРНУЮ ПАНЕЛЬ ПРОМЫШЛЕННОГО КОНТРОЛЛЕРА

МИКРОПРОЦЕССОРНЫЕ ТЕРМИНАЛЫ ЗАЩИТЫ И АВТОМАТИКИ, СЧЕТЧИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ПОДДЕРЖИВАЮЩИЕ ПРОТОКОЛЫ МЭК 61850

ТРАДИЦИОННЫЕ ТРАНСФОРМАТОРЫ ТОКА И ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ СОВМЕСТНО С УСТРОЙСТВОМ СОПРЯЖЕНИЯ ШИН

ИЗМЕРЕНИЯ, УПРАВЛЕНИЕ И СИГНАЛИЗАЦИЯ РЕАЛИЗОВАНЫ В SCADA-СИСТЕМЕ С УПРАВЛЕНИЕМ ЧЕРЕЗ ПРОМЫШЛЕННЫЙ КОМПЬЮТЕР С СЕНСОРНОЙ HMIПАНЕЛЬЮ

Что такое цифровая подстанция?

Это подстанция, оснащенная комплексом цифровых устройств, обеспечивающих функционирование систем релейной защиты и автоматики, учета электроэнергии, АСУ ТП, регистрации аварийных событий по протоколу МЭК 61850.

Внедрение МЭК 61850 дает возможность связать всё технологическое оборудование подстанции единой информационной сетью, по которой передаются не только данные от измерительных устройств к терминалам РЗА, но и сигналы управления.

Эксклюзивное решение стало доступным

Стандарт МЭК 61850 очень хорошо известен на подстанциях с классом питающего напряжения 110кВ и выше, мы предлагаем решение по применению данного стандарта в классах 35кВ, 10кВ и 6кВ.

Зачем необходима цифровая подстанция?

Сокращение времени проектирования на 25%

Типизация схемных и функциональных решений. Сокращение числа функциональных цепей, клеммных рядов в релейных отсеках ячеек.

Сокращение объема монтажных и наладочных работ на 50%

Применяется решение высокой заводской готовности. На заводе производится монтаж оборудования КРУ по главным и вспомогательным цепям. Прокладываются межшкафные связи систем оперативного тока, монтируются системы АСУ ТП, АСКУЭ. Осуществляется параметрирование, конфигурирование и тестирование систем РЗиА.

Сокращение затрат на обслуживание на 15%

Переход от проведения планового технического обслуживания по времени к обслуживанию по состоянию оборудования за счет On-line диагностики состояния оборудования. Тем самым снижается количество выездов работников для проведения регламентых работ.

100% оперативных переключений производится дистанционно с видеоконтролем операций

Простая интеграция всех систем в единое цифровое пространство позволяет управлять подстанцией безопасно и оперативно, а также встраивать в систему АСУ ТП других уровней.

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

Заказчику поставляются цифровые комплектные трансформаторные подстанции 100% заводской готовности, включая все основные подстанционные системы: АСУ ТП, АСКУЭ и СН.

КРУ «Классика» обладают современной архитектурой и по своим конструктивным и эксплуатационным параметрам в наивысшей степени отвечают всем современным требованиям. Благодаря широкой сетке схем главных цепей достигается высокая гибкость решений при проектировании и применении КРУ.

Все ячейки КРУ 10 кВ, устанавливаемые в подстанцию, оборудованы электроприводом заземляющего разъединителя и выдвижного кассетного элемента с выключателем.

Модуль SKP – специальный электротехнический контейнер с утеплением, оснащенный системами освещения, обогрева и вентиляции и встроенным в него электрооборудованием.

Данные модули обладают высокой заводской готовностью с малыми сроками монтажа и наладки, что наряду с высокой антикоррозионной стойкостью и возможностью эксплуатации в суровых климатических условиях делает их незаменимыми в построении комплектных трансформаторных подстанций.

Модульное здание не требует обслуживания в течение всего срока службы.

Завод-изготовитель дает гарантию на антикоррозийную защиту и покраску на весь срок службы.

Модульное здание имеет мощность тепловых потерь не более 4 кВт в режиме нормальной эксплуатации (температура снаружи -40 °С, температура внутри +18 °С) и 3 кВт в режиме энергосбережения (температура снаружи -40 °С, температура внутри +5 °С).

Модули SKP выполнены из металла с алюмоцинковым покрытием (Al-55%-Zn-45%), обеспечивающим гарантированную защиту от коррозии на весь срок службы модулей.

Как это работает?

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

Шкафы КРУ оснащены микропроцессорными терминалами защиты и автоматики, а также аналого-цифровыми преобразователями. Преобразования аналоговых сигналов в цифровые не выходят за пределы одного шкафа КРУ.

Для работы защит УРОВ, ЗМН, АВР, ЛЗШ, дуговой защиты, ДЗТ, ОБР необходимо наличие межтерминальной связи. Благодаря применению протокола МЭК 61850 все сигналы между терминалами передаются по одному оптическому кабелю или одному кабелю Еthernet. Таким образом, обмен между шкафами осуществляется только по цифровому каналу, который исключает необходимость в традиционных цепях, соединяющих шкафы.

Использование оптического кабеля или кабеля Еthernet вместо обычных сигнальных кабелей снижает длительность и стоимость простоя подстанций в процессе реконструкции вторичного оборудования и создает возможность для легкой и быстрой переконфигурации системы РЗиА.

Большая часть дискретных сигналов, передаваемых между устройствами РЗиА, прямо влияет на скорость ликвидации аварийного режима, поэтому передача сигнала осуществляется при помощи прокола МЭК 61850-8.2. (GOOSE), который отличается высоким быстродействием.

Время передачи одного пакета данных GOOSE

сообщения не превышает 0,001 секунды.

Было Стало

Передача измерений и дискретных сигналов от устройств РЗиА в систему АСУ ТП проивзодится по протоколу MMS (с использованием сервисов буферизированных и небуферизированных отчетов). При работе систем телесигнализации и телеизмерения происходит передача большого объема данных. Для снижения нагрузки на информационную сеть используется протокол MMS, который характеризуется компактностью передаваемой информации.

Как это работает?

Протокол передачи данных МЭК 61850 обеспечивает возможность самодиагностики оборудования и всех систем, установленных на подстанции, в режиме реального времени. В случае выявления отклонений от нормального режима работы, системой автоматически задействуется резервная схема, а оперативному персоналу выдается соответствующее сообщение.

Система анализирует полученные данные и формирует рекомендации по техническому обслуживанию оборудования, что позволяет изменить принцип работы с регулярных плановых профилактических работ на работу по факту появления неисправностей. Данный принцип работы дает возможность снизить затраты на персонал по содержанию оборудования.

Благодаря протоколу МЭК 61850 со стандартизированным интерфейсом при проектировании подстанции возможно применение оборудования любых производителей, поддерживающих данный протокол. ЦПС имеет возможность легко интегрироваться в систему АСУ ТП верхнего уровня.

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

В цифровой подстанции ЭТЗ Вектор реализовано полное телеуправление всеми коммутационными аппаратами присоединений: выключателем, выкатным элементом, заземлителем. Таким образом, полное управление подстанцией осуществляется удаленно, что существенно повышает безопасность персонала.

Сбор информации со всей подстанции и управление коммутационными аппаратами в режиме реального времени осуществляется при помощи Scada-системы, которая входит в базовую комплектацию всех цифровых подстанций ЭТЗ Вектора.

Предусматривается наличие автоматизированного рабочего места для оперативного персонала на подстанции и\или в диспетчерском пункте. Scada-система позволяет визуализировать сигналы и события, происходящие на подстанции, и предоставляет подробную информацию о сигнале тревоги или событии в графическом отображении.

Дополнительно одной из функцией Scada-системы является трансляция видеоизображения с камер, установленных в отсеках ячеек, что позволяет следить за состоянием коммутационных аппаратов.

Scada –система легко интегрируется с любыми программными системами верхнего уровня, поэтому не составит труда включить подстанцию в единое цифровое пространство энергорайона.

В.М. Зинин (ОАО “НИПОМ”)
А.М. Подлесный (ООО “ИнСАТ”)
В.Г. Карантаев (ОАО “ИнфоТеКС”)


Используемые технологические решения единой энергетической сети (ЕЭС), созданной более 60 лет назад, по многим параметрам подходят к границе эксплуатационных возможностей. Согласно концепции развития ЕЭС, разработанной в 2011 году , следующим шагом может стать интеллектуальная система с активно-адаптивной сетью (ААС), в зарубежной терминологии – Smart Grid. Процесс повышения уровня автоматизации объектов ЕЭС уже идет, привнося новые технологии, применение которых порождает не только всевозможные сложности чисто технологической реализации, но и риски информационной безопасности.

Одной из важнейших составных частей концепции Smart Grid является цифровая подстанция (ЦПС). Под ЦПС понимается подстанция с высоким уровнем автоматизации управления, в которой практически все процессы информационного обмена как между элементами ЦПС, так и с внешними системами, а также управления работой ЦПС осуществляются в цифровом виде на основе протоколов МЭК, в частности по открытому объектно-ориентированному стандарту МЭК 61850. В соответствии с данным стандартом устройства должны поддерживать (рис. 1): возможность приема выборок мгновенных значений (Simpled Values), аналоговых сигналов токов/напряжений, возможность публикации/подписки на GOOSE-сообщения, возможность информационного обмена по технологии “клиент-сервер” по протоколу MMS. MMS работает поверх стека TCP, что влияет на скорость передачи данных, поэтому MMS зачастую используется для решения задач по передаче не критичных к задержкам данных, например передачи команд телеуправления, сбора данных телеизмерений и телесигнализации и их передаче в верхний уровень – SCADA-системы. В отличие от MMS-протокола, GOOSE, наоборот, может использоваться для передачи “быстрых сигналов”, например команд отключения выключателя от защиты, за счет того, что данные в этом протоколе назначаются непосредственно в кадр Ethernet в обход стека TCP .

Вновь создаваемые программно-аппаратные комплексы, такие как цифровая подстанция, должны соответствовать действующим нормативно-правовым актам РФ, а также учитывать лучшие мировые практики построения систем киберзащиты.

Удовлетворяющая сформулированным требованиям ЦПС должна иметь высокотехнологичные средства защиты от кибератак, поскольку она в первую очередь является объектом критической информационной инфраструктуры (КИИ), о чем свидетельствует проект Федерального закона № 47571-7 “О безопасности КИИ Российской Федерации”, рекомендованный Комитетом Государственной Думы по энергетике и принятый в первом чтении 27 января 2017 года. Этот законопроект определяет основные принципы госрегулирования в сфере защиты КИИ страны в целях ее устойчивого функционирования при компьютерных атаках. Он был разработан с целью реализации “Доктрины информационной безопасности
Российской Федерации”, утвержденной Президентом России 5 декабря 2016 года, в рамках которой защита КИИ определяется как одна из стратегических целей. Согласно законопроекту “к критической инфраструктуре относятся информационные системы и телекоммуникационные сети госорганов, автоматизированные системы управления технологическими процессами, функционирующие в оборонной промышленности, области здравоохранения, транспорта, связи, кредитно-финансовой сфере, энергетике, топливной, атомной, ракетнокосмической, горнодобывающей, металлургической и химической промышленности”.

Детализируя указанные требования, создаваемая ЦПС должна обладать следующими характеристиками, обеспечивающими киберзащиту объекта:

  • создаваться на российской доверенной аппаратно-программной платформе с основными компонентами (операционная система, микропроцессор, контроллер периферийных интерфейсов, базовая система ввода/вывода), разработанными в РФ силами российских специалистов и имеющими
  • полную конструкторскую документацию;
  • учитывать положения стандартов, разработанных группой IEC TC57: IEC 61850, IEC60870, IEC 62351, в части безопасности коммуникационных протоколов, а также требования стандарта INL Cyber Security Procurement Language 2008, серии стандартов ISO/IEC 27000 в части общих принципов
  • обеспечения безопасности цифровых систем управления и ГОСТ-Р МЭК 62443-3-2013;
  • использовать российские гостированные криптографические алгоритмы, которые встраиваются в каждый элемент или каждую подсистему цифровой подстанции.

Еще одной отличительной особенностью построения технологических систем управления в электроэнергетике является то, что применение криптографических средств защиты информации (СКЗИ) в них не должно снижать производительность, так как длительность переходных (аварийных) процессов составляет десятки микросекунд. Во многих применяемых сегодня микроконтроллерах встраивание элементов кибербезопасности либо изначально не предусмотрено разработчиком, либо невозможно, так как их встраивание не позволит обеспечить требуемое быстродействие.


Опираясь на многолетний опыт работы и знания в своих предметных областях, специалисты компаний ОАО “НИПОМ”, ООО “ИнСАТ”, ОАО “ИнфоТеКС” и ПАО “ИНЭУМ им. И.С. Брука” разработали цифровую подстанцию, отвечающую всем указанным требованиям. “Нижний” уровень ЦПС базируется на инновационных терминалах релейной защиты (РЗА) компании ОАО “НИПОМ”. Разработанный терминал РЗА (рис. 2) выполнен в виде кассеты блочной конструкции с задним присоединением внешних проводов и оборудован системой тестового контроля, служащей
для проверки работоспособности основных узлов и блоков.

В корпусе терминала РЗА расположены платы дискретных входов/выходов, плата аналоговых входов для подачи измеряемых токов и напряжений, кросс-плата, служащая для согласования кабельной части универсальных плат (AI, DO/DI), блок питания и компьютер в промышленном исполнении с микропроцессором Эльбрус, поскольку функционирование КСЗИ ОС Эльбрус обеспечивает требуемый уровень защиты информации от несанкционированного доступа (НСД) и не влияет на быстродействие системы. Каждая плата DO/DI содержит 11 каналов DI и 10 каналов DO. Таким

Образом, в одном корпусе можно выполнить от 33 до 66 каналов DI и от 30 до 60 каналов DO, что позволяет использовать разработанные терминалы РЗА как на объектах с небольшим количеством сигналов, так и на сложных, с большим числом присоединений. Для реализации функций передачи сигналов дифференциальной токовой продольной защиты линии (ДЗЛ) с использованием протокола SV (МЭК 61850) количество портов Ethernet может быть увеличено добавлением стандартной Ethernet-карты в промышленный компьютер без изменения его конструкции. Полное разделение логики терминала и его аппаратного исполнения позволило предоставить широкие возможности для свободно конфигурируемой логики схем защиты. К особенностям терминала, повышающим его киберзащищеность, можно отнести механизмы строгой двухфакторной аутентификации, реализованные ОАО “НИПОМ” совместно с ОАО “ИнфоТеКС”.

“Верхний” уровень разработанной системы, как уже было сказано ранее, представляет собой сервер на базе отечественного процессора Эльбрус с одноименной операционной системой, который при необходимости может быть зарезервирован. Кроме того, в зависимости от требований того или иного объектав решении также может быть использована ОС AstraLinux. В качестве среды сбора и обработки данных используется российская SCADA-система MasterSCADA 4D производства компании ООО “ИнСАТ”. MasterSCADA 4D является кроссплатформенной, вертикально-нтегрированной программной платформой с объектно-ориентированными методами программирования, в том числе на языках стандарта МЭК 61131-3, и единственной на сегодня SCADA-системой, работающей на ОС Эльбрус. MasterSCADA 4D осуществляет сбор информации с терминала РЗА через встроенный драйвер протокола МЭК 61850 (MMS) и предоставляет данные в виде мнемосхем, отчетов и трендов на автоматизированное рабочее место оператора подстанции. На стартовой (основной) мнемосхеме оператора (рис. 3) отображается однолинейная схема подстанции, присоединения и состояния первичного оборудования.


Кроме того, оператор всегда располагает информацией о работоспособности сетевой топологии ЦПС в виде сигнализации состояний (включая АРМы, SCADA-серверы и вторичное коммуникационное оборудование) с фиксацией полного списка тревог в журнале событий. Встроенные механизмы защиты MasterSCADA 4D обеспечивают аутентификацию и идентификацию пользователей в системе, а также разграничение их прав доступа по заранее определенной разработчиком ролевой модели, регистрацию всех действий пользователей от момента идентификации до выхода из системы.


В целях защиты электронного периметра подстанции и реализации принципа многоуровневой защиты были использованы шлюзы безопасности разработки компании ОАО “ИнфоТеКС”, – ViPNetCoordinator HW 1000. Локально-вычислительная сеть подстанции была разделена/сегментирована на несколько доменов безопасности, т. е. зон подстанции с разными требованиями по обеспечению ИБ.

Таким образом, с использованием индустриального шлюза безопасности ViPNetCoordinator IG были разграничены права доступа между
уровнем станции и уровнями присоединения и шины процесса, что демонстрирует функциональная схема на рис. 5.

Реализация принципа многоуровневой защиты с применением межсетевых экранов является не только возможной, но и необходимой мерой защиты информации на подстанциях, находящихся в эксплуатации и подвергающихся частичной модернизации в соответствии с требованиями Приказа ФСТЭК России от 14 марта 2014 г. № 31 .

Применение наложенных средств ЗИ как на вновь создаваемых подстанциях, так и на подстанциях, подвергающихся глубокой модернизации, было бы неправильно признать достаточным, так как остаются высокие риски реализации компьютерных атак на незащищенные телекоммуникационные протоколы: MMS, GOOSE, SV.

В условиях необходимости удовлетворять комплексу требований по функциональной надежности, безопасности, быстродействию телекоммуникационных протоколов, а также по оптимальности затрат наиболее перспективно выглядит реализация концепции встраивания средств криптографической защиты информации в каждый элемент или в каждую подсистему цифровой подстанции.

ОАО “НИПОМ”, ООО “ИнСАТ”, ОАО “ИнфоТеКС” и ПАО “ИНЭУМ им. И.С. Брука” не останавливаются на достигнутом и продолжают совершенствовать разработанную ЦПС с использованием отечественных решений, которые позволяют реализовать киберзащищенное исполнение ЦПС для повышения надежности объектов высоковольтных электрических сетей.

Список литературы

  1. Основные положения концепции интеллектуальной энергосистемы с активноадаптивной сетью.
  2. International Electrotechnical Commission. Communication Networks and Systems for Power Utility Automation – Part 8-1: Specific Communication Service Mapping (SCSM)-Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3; IEC 61850-8-1-2011; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2011.
  3. Приказ ФСТЭК России от 14 марта 2014 г. № 31.

Зинин Владимир Михайлович – директор управления перспективных разработок ОАО “НИПОМ”,
Подлесный Андрей Михайлович – руководитель отдела продаж программного обеспечения ООО “ИнСАТ”,
Карантаев Владимир Геннадьевич – руководитель направления развития бизнеса ОАО “ИнфоТеКС”.

Новые технологии производства современных систем управления перешли из стадии научных исследований и экспериментов в стадию практического использования. Разработаны и внедряются современные коммуникационные стандарты обмена информацией. Широко применяются цифровые устройства защиты и автоматики. Произошло существенное развитие аппаратных и программных средств систем управления. Появление новых международных стандартов и развитие современных информационных технологий открывает возможности инновационных подходов к решению задач автоматизации и управления энергообъектами, позволяя создать подстанцию нового типа - цифровую подстанцию (ЦПС). Отличительными характеристиками ЦПС являются: наличие встроенных в первичное оборудование интеллектуальных микропроцессорных устройств, применение локальных вычислительных сетей для коммуникаций, цифровой способ доступа к информации, её передаче и обработке, автоматизация работы подстанции и процессов управления ею. В перспективе цифровая подстанция будет являться ключевым компонентом интеллектуальной сети (Smart Grid).

Термин «Цифровая подстанция» до сих пор трактуется по-разному разными специалистами в области систем автоматизации и управления. Для того чтобы разобраться, какие технологии и стандарты относятся к цифровой подстанции, проследим историю развития систем АСУ ТП и РЗА. Внедрение систем автоматизации началось с появления систем телемеханики. Устройства телемеханики позволяли собирать аналоговые и дискретные сигналы с использованием модулей УСО и измерительных преобразователей. На базе систем телемеханики развивались первые АСУ ТП электрических подстанций и электростанций. АСУ ТП позволяли не только собирать информацию, но и производить её обработку, а также представлять информацию в удобном для пользователя интерфейсе. С появлением первых микропроцессорных релейных защит информация от этих устройства также стала интегрироваться в системы АСУ ТП. Постепенно количество устройств с цифровыми интерфейсами увеличивалось (противоаварийная автоматика, системы мониторинга силового оборудования, системы мониторинга щита постоянного тока и собственных нужд и т.д.). Вся эта информация от устройств нижнего уровня интегрировалась в АСУ ТП по цифровым интерфейсам. Несмотря на повсеместное использование цифровых технологий для построения систем автоматизации, такие подстанции не являются в полной мере цифровыми, так как вся исходная информация, включая состояния блок-контактов, напряжения и токи, передаётся в виде аналоговых сигналов от распределительного устройства в оперативный пункт управления, где оцифровывается отдельно каждым устройством нижнего уровня. Например, одно и то же напряжение параллельно подаётся на все устройства нижнего уровня, которые преобразовывают его в цифровой вид и передают в АСУ ТП. На традиционных подстанциях различные подсистемы используют различные коммуникационные стандарты (протоколы) и информационные модели. Для функций защиты, измерения, учёта, контроля качества выполняются индивидуальные системы измерений и информационного взаимодействия, что значительно увеличивает как сложность реализации системы автоматизации на подстанции, так и её стоимость.

Переход к качественно новым системам автоматизации и управления возможен при использовании стандартов и технологий цифровой подстанции, к которым относятся:

1. стандарт МЭК 61850:
модель данных устройств;
унифицированное описание подстанции;
протоколы вертикального (MMS) и горизонтального (GOOSE) обмена;
протоколы передачи мгновенных значений токов и напряжений (SV);

2. цифровые (оптические и электронные) трансформаторы тока и напряжения;
3. аналоговые мультиплексоры (Merging Units);
4. выносные модули УСО (Micro RTU);
5. интеллектуальные электронные устройства (IED).

Основной особенностью и отличием стандарта МЭК 61850 от других стандартов является то, что в нём регламентируются не только вопросы передачи информации между отдельными устройствами, но и вопросы формализации описания схем - подстанции, защиты, автоматики и измерений, конфигурации устройств. В стандарте предусматриваются возможности использования новых цифровых измерительных устройств вместо традиционных аналоговых измерителей (трансформаторов тока и напряжения). Информационные технологии позволяют перейти к автоматизированному проектированию цифровых подстанций, управляемых цифровыми интегрированными системами. Все информационные связи на таких подстанциях выполняются цифровыми, образующими единую шину процесса. Это открывает возможности быстрого прямого обмена информацией между устройствами, что в конечном счёте даёт возможность сокращения числа медных кабельных связей, и числа устройств, а также более компактного их расположения.
СТРУКТУРА ЦИФРОВОЙ ПОДСТАНЦИИ

Рассмотрим подробнее структуру цифровой подстанции, выполненную в соответствии со стандартом МЭК 61850 (рис.). Система автоматизации энергообъекта, построенного по технологии «Цифровая подстанция», делится на три уровня:
полевой уровень (уровень процесса);
уровень присоединения;
станционный уровень.

Полевой уровень состоит из:
первичных датчиков для сбора дискретной информации и передачи команд управления на коммутационные аппараты (micro RTU);
первичных датчиков для сбора аналоговой информации (цифровые трансформаторы тока и напряжения).

Уровень присоединения состоит из интеллектуальных электронных устройств:
устройств управления и мониторинга (контроллеры присоединения, многофункциональные измерительные приборы, счётчики АСКУЭ, системы мониторинга трансформаторного оборудования и т.д.);
терминалов релейной защиты и локальной противоаварийной автоматики.

Станционный уровень состоит из:
серверов верхнего уровня (сервер базы данных, сервер SCADA, сервер телемеханики, сервер сбора и передачи технологической информации и т.д., концентратор данных);
АРМ персонала подстанции.

Из основных особенностей построения системы в первую очередь необходимо выделить новый «полевой» уровень, который включает в себя инновационные устройства первичного сбора информации: выносные УСО, цифровые измерительные трансформаторы, встроенные микропроцессорные системы диагностики силового оборудования и т.д.

Цифровые измерительные трансформаторы передают мгновенные значения напряжения и токов по протоколу МЭК 61850-9-2 устройствам уровня присоединения. Существует два вида цифровых измерительных трансформаторов: оптические и электронные. Оптические измерительные трансформаторы являются наиболее предпочтительными при создании систем управления и автоматизации цифровой подстанции, так как используют инновационный принцип измерений, исключающий влияние электромагнитных помех. Электронные измерительные трансформаторы базируются на базе традиционных трансформаторов и используют специализированные аналогово-цифровые преобразователи.

Данные от цифровых измерительных трансформаторов, как оптических, так и электронных, преобразуются в широковещательные Ethernet-пакеты с использованием мультиплексоров (Merging Units), предусмотренных стандартом МЭК 61850-9. Сформированные мультиплексорами пакеты передаются по сети Ethernet (шине процесса) в устройства уровня присоединения (контроллеры АСУ ТП, РЗА, ПА и др.) Частота дискретизации передаваемы данных не хуже 80 точек на период для устройств РЗА и ПА и 256 точек на период для АСУ ТП, АИИС КУЭ и др.

Данные о положении коммутационных аппаратов и другая дискретная информация (положение ключей режима управления, состояние цепей обогрева приводов и др.) собираются с использованием выносных модулей УСО, установленных в непосредственной близости от коммутационных аппаратов. Выносные модули УСО имеют релейные выходы для управления коммутационными аппаратами и синхронизируются с точностью не ниже 1 мс. Передача данных от выносных модулей УСО осуществляется по оптоволоконной связи, являющейся частью шины процесса по протоколу МЭК 61850-8-1 (GOOSE). Передача команд управления на коммутационные аппараты также осуществляется через выносные модули УСО с использованием протокола МЭК 61850-8-1 (GOOSE).

Силовое оборудование оснащается набором цифровых датчиков. Существуют специализированные системы для мониторинга трансформаторного и элегазового оборудования, которые имеют цифровой интерфейс для интеграции в АСУ ТП без использования дискретных входов и датчиков 4-20 мА. Современные КРУЭ оснащаются встраиваемыми цифровыми трансформаторами тока и напряжения, а шкафы управления в КРУЭ позволяют устанавливать выносные УСО для сбора дискретных сигналов. Установка цифровых датчиков в КРУЭ производится на заводе-изготовителе, что позволяет упростить процесс проектирования, а также монтажные и наладочные работы на объекте.

Другим отличием является объединение среднего (концентраторов данных) и верхнего (сервера и АРМ) уровня в один станционный уровень. Это связано с единством протоколов передачи данных (стандарт МЭК 61850-8-1), при котором средний уровень, ранее выполнявший работу по преобразованию информации из различных форматов в единый формат для интегрированной АСУ ТП, постепенно теряет своё назначение. Уровень присоединения включает в себя интеллектуальные электронные устройства, которые получают информацию от устройств полевого уровня, выполняют логическую обработку информации, передают управляющие воздействия через устройства полевого уровня на первичное оборудование, а также осуществляют передачу информации на станционный уровень. К этим устройствам относятся контроллеры присоединения, терминалы МПРЗА и другие многофункциональные микропроцессорные устройства.

Следующим отличием в структуре является её гибкость. Устройства для цифровой подстанции могут быть выполнены по модульному принципу и позволяют совмещать в себе функции множества устройств. Гибкость построения цифровых подстанций позволяет предложить различные решения с учётом особенностей энергообъекта. В случае модернизации существующей подстанции без замены силового оборудования для сбора и оцифровки первичной информации можно устанавливать шкафы выносных УСО. При этом выносные УСО помимо плат дискретного ввода/вывода будут содержать платы прямого аналогового ввода (1/5 А), которые позволяют собрать, оцифровать и выдать в протоколе МЭК 61850-9-2 данные от традиционных трансформаторов тока и напряжения. В дальнейшем полная или частичная замена первичного оборудования, в том числе замена электромагнитных трансформаторов на оптические, не приведёт к изменению уровней присоединения и подстанционного. В случае использования КРУЭ имеется возможность совмещения функций выносного УСО, Merging Unit и контроллера присоединения. Такое устройство устанавливается в шкаф управления КРУЭ и позволяет оцифровать всю исходную информацию (аналоговую или дискретную), а также выполнить функции контроллера присоединения и функции резервного местного управления.

С появлением стандарта МЭК 61850 ряд производителей выпустили продукты для цифровой подстанции. В настоящее время во всём мире выполнено уже достаточно много проектов, связанных с применением стандарта МЭК 61850, показавших преимущества данной технологии. К сожалению, уже сейчас, анализируя современные решения для цифровой подстанции, можно заметить достаточно свободную трактовку требований стандарта, что может привести в будущем к несогласованности и проблемам в интеграции уже современных решений в области автоматизации.

Сегодня в России активно ведётся работа по развитию технологии «Цифровая подстанция». Запущен ряд пилотных проектов, ведущие российские фирмы приступили к разработке отечественных продуктов и решений для цифровой подстанции. На наш взгляд, при создании новых технологий, ориентированных на цифровую подстанцию, необходимо строго следовать стандарту МЭК 61850, не только в части протоколов передачи данных, но и в идеологии построения системы. Соответствие требованиям стандарта позволит в будущем упростить модернизацию и обслуживание объектов на базе новых технологий.

В 2011 году ведущими российскими компаниями (ООО НПП «ЭКРА», ООО «ЭнергопромАвтоматизация», ЗАО «Профотек» и ОАО «НИИПТ») было подписало генеральное соглашение об организации стратегического сотрудничества с целью объединения научно-технических, инженерных и коммерческих усилий для создания цифровой подстанции на территории РФ.

В соответствии с МЭК 61850, разработанная система состоит из трёх уровней. Шина процесса представлена оптическими трансформаторами (ЗАО «Профотек») и выносным УСО (microRTU) NPT Expert (ООО «ЭнергопромАвтоматизация»). Уровень присоединения - микропроцессорные защиты ООО НПП «ЭКРА» и контроллер присоединения NPT BAY-9-2 ООО «ЭнергопромАвтоматизация». Оба устройства принимают аналоговую информацию по МЭК 61850-9-2 и дискретную информацию по МЭК 61850-8-1(GOOSE). Станционный уровень реализован на базе SCADA NPT Expert с поддержкой МЭК 61850-8-1(MMS).

В рамках совместного проекта была разработана также система автоматизированного проектирования ЦПС - SCADA Studio, проработана структура сети Ethernet для различных вариантов построения, собран макет цифровой подстанции и проведены совместные испытания, в том числе на испытательном стенде в ОАО «НИИПТ».

Действующий прототип цифровой подстанции был представлен на выставке «Электрические сети России-2011». Внедрение пилотного проекта и выход на полномасштабное производство оборудования цифровой подстанции запланирован на 2012 год. Российское оборудование для «Цифровой подстанции» прошло полномасштабное тестирование, подтверждена также его совместимость по стандарту МЭК 61850 с оборудованием различных зарубежных (Omicron, SEL, GE, Siemens и др.) и отечественных (ООО «Прософт-Системы», НПП «Динамика» и др.) компаний.

Разработка собственного российского решения по цифровой подстанции позволит не только развивать отечественное производство и науку, но и повысить энергобезопасность нашей страны. Проведённые исследования технико-экономических показателей позволяют сделать вывод, что стоимость нового решения при переходе на серийный выпуск продукции не будет превышать стоимости традиционных решений построения систем автоматизации и позволит получить ряд технических преимуществ, таких как:
значительное сокращение кабельных связей;
повышение точности измерений;
простота проектирования, эксплуатации и обслуживания;
унифицированная платформа обмена данными (МЭК 61850);
высокая помехозащищённость;
высокая пожаро-взрывобезопасность и экологичность;
снижение количества модулей ввода/вывода на устройства АСУ ТП и РЗА, обеспечивающее снижение стоимости устройств.

Ещё ряд вопросов требует дополнительных проверок и решений. Это относится к надёжности цифровых систем, к вопросам конфигурирования устройств на уровне подстанции и энергообъединения, к созданию общедоступных инструментальных средств проектирования, ориентированных на разных производителей микропроцессорного и основного оборудования. Для обеспечения требуемого уровня надёжности в рамках пилотных проектов должны быть решены следующие задачи.

1. Определение оптимальной структуры цифровой подстанции в целом и её отдельных систем.
2. Гармонизация международных стандартов и разработка отечественной нормативной документации.
3. Метрологическая аттестация систем автоматизации, в том числе и системы АИИСКУЭ, с поддержкой МЭК 61850-9-2.
4. Накопление статистики по надёжности оборудования цифровой подстанции.
5. Накопление опыта внедрения и эксплуатации, обучение персонала, создание центров компетенции.

В настоящее время в мире началось массовое внедрение решений класса «цифровая подстанция», основанных на стандартах серии МЭК 61850, реализуются технологии управления Smart Grid, вводятся в эксплуатацию приложения автоматизированных систем технологического управления. Применение технологии «Цифровой подстанции» должно позволить в будущем существенно сократить расходы на проектирование, пуско-наладку, эксплуатацию и обслуживание энергетических объектов.

Алексей Данилин, директор по АСДУ ОАО «СО ЕЭС»,Татьяна Горелик, заведующая отделом АСУ ТП, к.т.н., Олег Кириенко, инженер, ОАО «НИИПТ» Николай Дони, заведующий отделом перспективных разработок НПП «ЭКРА»

Рассматриваются вопросы реализации совместного проекта ЗАО «ГК «Электрощит»-ТМ Самара» и ЗАО «Инженерный центр «Энергосервис» по созданию цифровых ячеек на базе КРУ СЭЩ‑70. Циф ровая подстанция .

ЗАО «Инженерный центр «Энергосервис», г. Архангельск,

ЗАО «ГК «Электрощит»-ТМ Самара», г. Самара

Основные преимущества цифровой подстанции связаны с повышением уровня ее автоматизации за счет применения более скоростных коммуникаций на основе промышленного Ethernet с поддержкой технологий резервирования и безопасности, использования единых протоколов обмена при интеграции с АСУ ТП подстанции различных интеллектуальных электронных устройств (ИЭУ), возможности реализации так называемых горизонтальных связей между ИЭУ для обмена дискретной (МЭК 61850-8-1, GOOSE-сообщения) и аналоговой информацией (МЭК 61850-90-5) . Организация горизонтальных связей между интеллектуальными электронными устройствами позволяет построить надежную систему оперативных блокировок на подстанции, обеспечить реализацию более эффективных алгоритмов устройств защиты и автоматики, систем регулирования напряжения на подстанции и т. д.

Другое важнейшее преимущество цифровой подстанции связано с существенным сокращением количества медных проводов во вторичных и оперативных цепях или их отсутствием при полной реализации стандартов цифровой подстанции. Переход на цифровые технологии связи на подстанциях позволит осуществить полноценный мониторинг и диагностику работы как отдельных интеллектуальных электронных устройств, промышленных сетей, высоковольтных ячеек, так и подстанции в целом.

На подстанциях используются распределительные устройства (РУ) разных уровней напряжений. Наибольшее количество присоединений чаще всего приходится на РУ 6–20 кВ. Поэтому актуальной задачей является внедрение эффективных и доступных по стоимости решений на основе стандартов МЭК 61850 для распределительных устройств 6–20 кВ.

Главное отличие решений для РУ 6–20 кВ от решений для открытых РУ 110 кВ и выше связано с тем, что основные компоненты цифровой подстанции находятся внутри высоковольтных ячеек 6–20 кВ, что позволяет упростить реализацию резервирования промышленных сетей, требований по обеспечению ЭМС, вводу/выводу аналоговой и дискретной информации. Основным компонентом РУ 6–20 кВ нового поколения является цифровая ячейка.

Наиболее важная задача совместного проекта ЗАО «Инженерный центр «Энергосервис» и ЗАО «ГК «Электрощит»-ТМ Самара» связана с разработкой цифровой ячейки на базе комплектного распределительного устройства (КРУ) СЭЩ‑70 (рис. 1), сопоставимой по стоимости с СЭЩ‑70 при использовании традиционных микропроцессорных устройств и промышленных сетей на основе RS‑485. При этом подстанции, оснащенные цифровыми ячейками СЭЩ‑70, должны иметь более высокий уровень надежности, обладать возможностью тестирования ячеек сразу после их сборки, обеспечивать возможность мониторинга и диагностики как отдельных компонентов ячеек, так и ячейки, и подстанции в целом.


Рис. 1. Комплектное распределительное устройство СЭЩ-70

В процессе реализации совместного проекта прорабатывается 4 основных варианта цифровой ячейки на базе КРУ СЭЩ‑70.

Вариант 1

Первый из рассматриваемых вариантов имеет максимальную степень готовности к серийному производству. Его структурная схема приведена на рис. 2.


Рис. 2. Структурная схема 1‑го варианта цифровой ячейки

Центральным компонентом цифровой ячейки является многофункциональный измерительный преобразователь ЭНИП‑2, который обеспечивает измерение параметров режима энергосистем на основе среднеквадратических значений, а также на основе токов и напряжений главной гармоники, выполнение функций телесигнализации и телеуправления, технического учета электроэнергии, замещения щитовых приборов при использовании модулей индикации, технического учета электроэнергии, мониторинга качества электроэнергии.

Устройства ЭНИП‑2 содержат один или два порта Ethernet (витая пара 2 × 100BASE-TX или оптика 2 × 100BASE-FX MM LC) с поддержкой МЭК 61850-8-1. Возможна как независимая работа портов, так и работа через встроенный сетевой коммутатор. В ЭНИП‑2 встроен сервер MMS-сообщений, публикатор и подписчик GOOSE-сообщений для реализации оперативных блокировок и управления.

С целью расширения функциональных возможностей ЭНИП‑2 дополняются модулями дискретного ввода/вывода, блоками телеуправления со встроенными реле, модулями кабельных сетей 6–35 кВ, модулями ввода/вывода с различных датчиков по шине 1‑Wire (температурные датчики, датчики влажности, датчики охранных систем и т. д.), модулями индикации на основе светодиодных индикаторов, черно-белых и цветных сенсорных ЖКИ .

Для замещения щитовых приборов и индикаторов состояния ячейки предлагается два основных конструктивных решения (рис. 3): раздельное размещение ЭНИП‑2 и одного или нескольких модулей индикации и совмещение ЭНИП‑2 и модуля индикации в единое устройство с установкой на место щитового прибора.



Рис. 3. ЭНИП‑2 и модуль индикации

При большом многообразии функций стоимость ЭНИП‑2 вместе с модулем индикации сопоставима со стоимостью многофункционального измерительного преобразователя телемеханики или многофункционального щитового прибора. В случае технического учета электроэнергии ЭНИП‑2 замещает счетчик электрической энергии. Таким образом, применение ЭНИП‑2 имеет и экономический эффект. В этом случае достигается редкое сочетание инноваций и финансовой выгоды.

Подключение УРЗА и счетчика электроэнергии к шине подстанции (рис. 2) производится через специальное устройство сопряжения – шлюз, так как в настоящее время отсутствуют приемлемые по стоимости устройства РЗА и счетчики с поддержкой МЭК 61850-8-1. Использование шлюза следует рассматривать как временное решение. В ближайшем будущем ожидается появление доступных по стоимости УРЗА и счетчиков с поддержкой шины подстанции. Так, специалистами ЗАО «Инженерный центр «Энергосервис» завершается разработка многофункционального измерительного устройства ESM, которое в отличие от ЭНИП‑2 выполняет функции счетчика коммерческого учета электроэнергии.

Выбор оборудования для локальной сети осуществляется заказчиком на этапе заказа цифровых ячеек. Наиболее рациональное решение для реализации шины подстанции связано с применением сетевых устройств, выполняющих функции специального коммуникационного адаптера для сетей с резервированием RedBox (Redundancy Box) и коммутатора. Указанные сетевые устройства обеспечивают поддержку протокола бесшовного сетевого резервирования HSR согласно МЭК 62439-3 для промышленных сетей Ethernet с кольцевой топологией или протокола резервирования PRP для промышленных сетей с произвольной топологией. Применение коммутаторов, совмещенных с RedBox, позволяет упростить реализацию интеллектуальных электронных устройств. В этом случае в используемых ИЭУ достаточно наличия одного сетевого интерфейса. Начало массового производства указанных коммутаторов с реализацией протоколов резервирования HSR и PRP на программируемых логических интегральных микро­схемах (FPGA, Field-Programmable Gate Array) фирмами Moxa и Kyland запланировано на первую половину 2014 года.

В высоковольтных ячейках применяется множественное дублирование ввода/вывода дискретных сигналов, используется большое количество медных проводов, что приводит к снижению надежности. Для устройств РЗА, телемеханики, устройств индикации состояния ячейки, организации оперативных блокировок часто применяются отдельные концевые выключатели, блок-контакты выключателей и т. д.

В предлагаемом на рис. 2 варианте используется только двукратное дублирование ввода/вывода дискретных сигналов.

Вариант 2

Второй вариант цифровой ячейки (рис. 4) подразумевает отказ от дублирования ввода дискретных сигналов для выполнения функций релейной защиты и автоматики, телемеханики, оперативных блокировок и т. д. Это позволит значительно сократить количество контрольных проводов и обеспечит повышение надежности.


Рис. 4. Структурная схема 2‑го варианта цифровой ячейки (цифровая подстанция)

Структурная схема на рис. 4 построена для случая, когда требуется технический учет электроэнергии. При необходимости провести коммерческий учет электроэнергии планируется вместо ЭНИП‑2 использовать многофункциональное измерительное устройство ESM.

Принципиальное отличие от первого варианта связано с изменением способов ввода/вывода дискретных сигналов. В СЭЩ-70 имеется уникальная возможность полной замены концевых выключателей, блок-контактов на бесконтактные датчики и переходом на взаимодействия с блоком управления вакуумным выключателем с электромагнитной защелкой по цифровым интерфейсам.

Данный вариант предусматривает использование распределенной системы дискретного ввода/вывода, основанной на применении специальных модулей дискретного ввода/вывода ЭНМВ‑4‑ХХ. Можно рассматривать данную подсистему как простейший вариант шины процесса для дискретного ввода/вывода в цифровой ячейке.

Семейство модулей ЭНМВ‑4‑ХХ разрабатывается специально для дискретного ввода/вывода в ячейках СЭЩ‑70. В состав семейства входят следующие устройства: модуль ввода информации с бесконтактных датчиков положения, модуль ввода информации с «сухих» контактов, модуль ввода/вывода с актуаторов, модуль взаимодействия с блоком управления вакуумным выключателем с магнитной защелкой.

Использование в распределительных устройствах бесконтактных датчиков положения вместо концевых выключателей и блок-контактов имеет неоспоримые преимущества. Во‑первых, исчезают проблемы, связанные с «дребезгом» контактов, необходимостью пробоя оксидной пленки, большим количеством контрольных проводов. Во‑вторых, уменьшается потребление оперативного тока, повышается надежность, появляется возможность обеспечить диагностику подсистемы ввода/вывода дискретной информации.

Ввод информации с бесконтактных датчиков в модуле ЭНМВ‑4‑БК производится с использованием многоканального аналого-цифрового преобразователя (АЦП). Это позволяет контролировать остаточное напряжение датчика и по его значению диагностировать неисправность, а также обеспечивает гибкость при работе с различными моделями датчиков. В комплектных распределительных устройствах СЭЩ‑70 используются бесконтактные датчики серии E2A фирмы Omron для контроля положения элементов КРУ, в том числе положения выдвижного элемента, выключателя, заземляющих разъединителей, дверцы отсека, клапанов ЗДЗ и т. д.

Применение модулей ЭНМВ‑4‑БК совместно с датчиками серии E2A позволяет значительно сократить количество контрольных кабелей в высоковольтной ячейке, повысить надежность КРУ, а также организовать эффективную систему блокировок.

Модули дискретного ввода/вывода максимально приближены к датчикам дискретных сигналов. Подключение модулей к головному устройству сопряжения с шиной процесса УСШ-Д производится с помощью промышленной сети CAN.

Предлагаемая система дискретного ввода/вывода, основанная на использовании промышленной сети CAN, обладает возможностью диагностики как самой сети, так и отдельных датчиков и блоков управления вакуумными выключателями. Для реализации оперативных блокировок в разрабатываемом устройстве сопряжения УСШ-Д предусматривается программируемая логика.

Идеальным вариантом подключения устройств РЗА к УСШ-Д является подключение по цифровому интерфейсу, что требует модернизации устройств РЗА. Промежуточный вариант связан с применением дополнительного модуля ЭНМВ‑4‑МС, управляемого от УСШ-Д, который преобразует цифровой код в дискретные сигналы для УРЗА.

Вариант 3

Третий вариант – полноценная реализация цифровой ячейки (рис. 5).



Рис. 5. Структурная схема 3‑го варианта цифровой ячейки

В качестве базовых компонентов цифровой ячейки в третьем варианте используются устройства сопряжения с шиной процесса УСШ-Т, УСШ-Н, УСШ‑Д. Все они разрабатываются на основе аналогового устройства сопряжения с шиной процесса ENMU и дискретного устройства сопряжения с шиной процесса ENCB . Разработка устройств сопряжения с шиной процесса ведется специалистами ЗАО «Инженерный центр «Энергосервис» с 2011 года. Устройства имеют модульную структуру. Основные модули: модуль тока для подключения к измерительной и релейной обмоткам трансформатора тока, модуль напряжения, процессорный модуль, модуль дискретного ввода/вывода, модуль питания. Каждый имеет несколько модификаций.

Необходимость в разработке различных модификаций модулей тока и модулей напряжения связана как с реализацией устройств сопряжения (MU, Merging Unit), например при использовании оптических датчиков тока или датчиков тока с применением тора Роговского, емкостных или резистивных датчиков напряжения, так и с реализацией специальной разновидности устройств сопряжения – SAMU (Stand-Alone Merging Unit), подключаемых к традиционным транс­форматорам тока и напряжения.

Если ENMU используется в качестве SAMU, то при его конфигурировании задаются следующие возможные режимы работы: формирование раздельных или совмещенного потоков данных от релейной и измерительной обмоток трансформатора тока для выборок тока (sampled values) и для векторных измерений. В последних модификациях ENMU обеспечена одновременная передача трех потоков sampled values (sv256, sv80M, sv80P), реализован протокол резервирования PRP (IEC 62439-3).

Устройства сопряжения с шиной процесса ENMU были разработаны не только для применения их в распределительных устройствах 110 кВ и выше. Габаритные размеры и вес устройств ENMU позволяют устанавливать их в релейные отсеки высоковольтных ячеек 6–20 кВ. Для цифровых ячеек СЭЩ‑70 на основе готовых модулей разрабатываются специализированные аналоговые и дискретные устройства сопряжения с шиной процесса.

Следует отметить, что в цифровой ячейке возможно применение как совмещенного аналогового устройства сопряжения с шиной процесса (УСШ), так и токового устройства сопряжения с шиной процесса (УСШ-Т), а также устройства сопряжения напряжения с шиной процесса (УСШ-Н).

В третьем варианте предусмотрена внутренняя шина процесса по топологии «точка-точка» и внешняя шина процесса, данные для которой формируются контроллером присоединения путем консолидации потоков данных от УСШ-Т, УСШ-Н и устройства сопряжения шины процесса с дискретными датчиками УСШ-Д. Консолидация данных может производиться путем совмещения выборочных значений тока и напряжения либо с помощью совмещения выборочных значений (sampled values) тока и напряжения с GOOSE-сообщениями.

В случае необходимости расширения функциональных возможностей по локальной защите и автоматике дополнительное устройство РЗА может быть подключено также по схеме «точка-точка». Для реализации других устройств РЗА (централизованных устройств РЗА, дифференциальной защиты линий, шин, централизованных устройств режимной и противоаварийной автоматики) необходимо подключить контроллер присоединения к шине процесса РУ 6–20 КВ посредством коммутатора. Один из возможных вариантов – применение сетевых устройств, выполняющих функции специального коммуникационного адаптера для сетей с резервированием RedBox (Redundancy Box) и коммутатора с поддержкой протоколов резервирования HSR или PRP. Указанные сетевые устройства упоминались при описании первого варианта цифровой ячейки.

В рассматриваемом варианте предполагается использовать многофункциональное устройство ESM (рис. 6), которое в отличие от ЭНИП‑2 дополнительно выполняет функции счетчика коммерческого учета электроэнергии, прибора измерения показателей качества электроэнергии и устройства синхронизированных векторных измерений. Специалистами ЗАО «Инженерный центр «Энергосервис» разрабатываются две основные модификации ESM: с аналоговыми входами и цифровыми входами согласно МЭК 61850-9-2.