Элементы цап. Цифро-аналоговый преобразователь: описание, принцип работы, применение

Аналоговые сигналы характеризуются многими техническими параметрами, одним из которых является Например, ухо человека слышит сигналы, имеющие частоту в диапазоне от 1 до 22 кГц, а видимый свет содержит частоты, измеряемые миллиардами герц. Примером записи аналогового сигнала может служить граммофонная пластинка. Фотографии, вначале черно-белые, а, затем, и цветные - тоже пример записи аналогового сигнала.

Практически всегда стоит после о котором полезно сказать несколько слов, чтобы была понятней задача, которую решают рассматриваемые нами устройства.

АЦП преобразует в цифровой. Обычно число, которое соответствует величине сигнала в момент его измерения, представляют двоичным кодом. Каждое измерение выполняют с определенной частотой, называемой частотой квантования.

Теоретически обоснована минимальная частота квантования, обеспечивающая неискаженное восстановление сигнала. Этот сигнал без искажения и должен восстановить на выходе преобразователь цифрового сигнала в аналоговый. Частота квантования должна быть не меньше двух максимальных частот преобразуемого сигнала. Например, для неискаженного преобразования звукового сигнала достаточно частоты квантования, равной 44 кГц.

Теперь понятно, что имеет на входе последовательность двоичных кодов, который он и должен преобразовать в соответствующий аналоговый сигнал.

Надежность в работе и срок службы также входят в показатели, но эти параметры зависят не от принципа работы ЦАП, а, скорее, от элементной базы и качества сборки. Независимо от принципа преобразования, цифро-аналоговые преобразователи различают по характеристикам, таким как динамический диапазон, точность преобразования и по временным показателям.

Динамический диапазон определяют для входа и выхода ЦАП, как отношение максимальной величины на входе (на выходе), к минимальной входной (выходной) величине.

Одним из временных параметров является величина, обратная частоте квантования, называемая периодом квантования. Понятно, что для ЦАП эту величину задает АЦП, с помощью которого сигнал был преобразован.

Основной же величиной, характеризующей быстродействие ЦАП, является время преобразования. Здесь приходится выбирать: большее время преобразования - более точный ЦАП, но меньше его быстродействие, и наоборот.

Рассмотрим некоторые принципы преобразования «цифра-аналог», не приводя формул и схем. Существует два принципа преобразования - последовательный и параллельный.

Последовательность цифровых кодов на входе цифро-аналоговый преобразователь преобразует в последовательность прямоугольных импульсов на выходе. Ширину импульса и последующий за ним интервал до очередного импульса определяют в зависимости от значения поступившего двоичного кода. Следовательно, на выходе низкочастотного фильтра получают аналоговый сигнал, по импульсам, поступающим на вход с переменным периодом.

Параллельное преобразование выполняют, например, с помощью сопротивлений, включенных параллельно к стабильному источнику питания. Количество сопротивлений равно разрядности поступающего на вход кода. Величина сопротивления в старшем разряде в 2 раза меньше, чем в предшествующем младшем разряде. В цепи каждого сопротивления имеется ключ. Входной код управляет ключами - там, где 1, ток проходит. Следовательно, в цепях ток будет определяться весом разряда, и цифро-аналоговый преобразователь на выходе имеет суммарный ток, который будет соответствовать записанному двоичному коду.

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0...255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, - отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.

Таблица 1

01111111
00000001
00000000
11111111
10000001
10000000
11111111
10000001
10000000
01111111
00000001
00000000
127/255
1/255
0
-1/255
-127/255
-128/255

Чтобы получить выходной сигнал с правильным знаком, необходимо осуществить обратный сдвиг путем вычитания тока или напряжения, составляющего половину шкалы преобразователя. Для различных типов ЦАП это можно сделать разными способами. Например, у ЦАП на источниках тока, диапазон изменения опорного напряжения ограничен, причем выходное напряжение имеет полярность обратную полярности опорного напряжения. В этом случае биполярный режим наиболее просто реализуется включением дополнительного резистора смещения R см между выходом ЦАП и входом опорного напряжения (рис. 18а). Резистор R см изготавливается на кристалле ИМС. Его сопротивление выбрано таким, чтобы ток I см составлял половину максимального значения выходного тока ЦАП.

В принципе, аналогично можно решить задачу смещения выходного тока и для ЦАП на МОП-ключах. Для этого нужно проинвертировать опорное напряжение, а затем сформировать из -Uоп ток смещения, который следует вычесть из выходного тока ЦАП. Однако для сохранения температурной стабильности лучше обеспечить формирование тока смещения непосредственно в ЦАП. Для этого в схему на рис. 8а вводят второй операционный усилитель и второй выход ЦАП подключают ко входу этого ОУ (рис. 18б).

Второй выходной ток ЦАП, согласно (10),

или, с учетом (8)

(23)
(24)
(25)

Это в случае N=8 с точностью до множителя 2 совпадает с данными табл. 6, с учетом того, что для преобразователя на МОП-ключах максимальный выходной ток

Если резисторы R2 хорошо согласованы по сопротивлению, то абсолютное изменение их величины при колебаниях температуры не влияет на выходное напряжение схемы.

У цифро-аналоговых преобразователей с выходным сигналом в виде напряжения, построенных на инверсной резистивной матрице (см. рис. 9), можно более просто реализовать биполярный режим (рис. 18в). Как правило, такие ЦАП содержат на кристалле выходной буферный усилитель. Для работы ЦАП в униполярном включении свободный вывод нижнего по схеме резистора R не подключают, либо подключают к общей точке схемы для удвоения выходного напряжения. Для работы в биполярном включении свободный вывод этого резистора соединяют со входом опорного напряжения ЦАП. ОУ в этом случае работает в дифференциальном включении и его выходное напряжение с учетом (16)

(26)

Перемножители и делители функций

Как уже указывалось выше, ЦА-преобразователи на МОП-ключах, допускают изменение опорного напряжения в широких пределах, в том числе и смену полярности. Из формул (8) и (17) следует, что выходное напряжение ЦАП пропорционально произведению опорного напряжения на входной цифровой код. Это обстоятельство позволяет непосредственно использовать такие ЦАП для перемножения аналогового сигнала на цифровой код.

При униполярном включении ЦАП выходной сигнал пропорционален произведению двухполярного аналогового сигнала на однополярный цифровой код. Такой перемножитель называют двухквадрантным. При биполярном включении ЦАП (рис. 18б и 18в) выходной сигнал пропорционален произведению двухполярного аналогового сигнала на двухполярный цифровой код. Эта схема может работать как четырехквадрантный перемножитель.

Деление входного напряжения на цифровой масштаб M D =D/2 N выполняется с помощью схемы двухквадрантного делителя (рис. 19).

В схеме на рис. 19а преобразователь на МОП-ключах с токовым выходом работает как преобразователь "напряжение-ток", управляемый кодом D и включенный в цепь обратной связи ОУ. Входное напряжение подается на свободный вывод резистора обратной связи ЦАП, размещенного на кристалле ИМС. В этой схеме выходной ток ЦАП

что при выполнении условия R ос =R дает

Следует отметить, что при коде "все нули" обратная связь размыкается. Предотвратить этот режим можно, либо запретив такой код программно, либо включив между выходом и инвертирующим входом ОУ резистор с сопротивлением, равным R·2 N+1 .

Схема делителя на основе ЦАП с выходом в виде напряжения, построенном на инверсной резистивной матрице и включающем буферный ОУ, приведена на рис. 8.19б. Выходное и входное напряжения этой схемы связаны уравнением

(27)

Отсюда следует

В данной схеме усилитель охвачен как положительной, так и отрицательной обратными связями. Для преобладания отрицательной обратной связи (иначе ОУ превратится в компаратор) необходимо выполнение условия D<2 N-1 или M D <1/2. Это ограничивает значение входного кода нижней половиной шкалы.

Аттенюаторы и интеграторы на ЦАП

Аттенюаторы, т.е. регуляторы уровня сигнала, с цифровым управлением гораздо более надежны и долговечны, чем традиционные аттенюаторы на основе переменных резисторов. Их целесообразно использовать в измерительных приборах и других устройствах, требующих подстройки параметров, особенно автоматической. Такие аттенюаторы можно наиболее просто построить на основе перемножающего ЦАП с инверсной резистивной матрицей и буферным усилителем. В принципе для этой цели подойдет любой ЦАП указанного типа, но некоторыми фирмами выпускаются преобразователи, оптимизированные для выполнения указанной функции. На рис. 20а приведена схема аттенюатора на переменном резисторе, а на рис. 20б - аналогичная схема на перемножающем ЦАП.

Если входной сигнал - однополярный, целесообразно использовать ЦАП с однополярным питанием, но буферный ОУ должен иметь выход "rail-to-rail", т.е. его выходное напряжение должно достигать нуля и напряжения питания. Если ЦАП - многоканальный, то у каждого преобразователя микросхемы должен быть индивидуальный вход опорного напряжения. Этим требованиям в разной степени удовлетворяют такие ИМС ЦАП, как 2-х канальный 12-разрядный МАХ532, 4-х канальный 8-разрядный МАХ509, 8-ми канальный 8-разрядный AD8441, 8-ми канальный 8-разрядный DAC-8841 и др.

Для построения интегратора с цифровой установкой постоянной времени интегрирования можно использовать базовую схему интегратора, а в качестве входного резистора включить ЦАП с суммированием напряжений (рис. 12). На базе такой схемы можно построить фильтры, в том числе фильтры на основе метода переменных состояния, перестраиваемые генераторы импульсов и т.д.

Системы прямого цифрового синтеза сигналов

Важной областью применения ЦАП является синтез аналоговых сигналов необходимой формы. Аналоговые генераторы сигналов - синусоидальной, треугольной и прямоугольной форм - имеют низкую точность и стабильность, не могут управляться от ЭВМ. В последние годы получили развитие системы прямого цифрового синтеза сигналов, обеспечивающие высокую точность задания частоты и начальной фазы сигналов, а также высокую верность воспроизведения их формы. Более того, эти системы позволяют генерировать сигналы большого многообразия форм, в том числе и форм, задаваемых пользователем. Упрощенная блок-схема генератора прямого цифрового синтеза сигналов приведена на рис. 21.

В принципе, системы прямого цифрового синтеза просты. Более того, теория и основные способы построения таких систем известны уже около 30 лет. Правда, только недавно появились ЦАП и специализированные аналого-цифровые ИМС, подходящие для синтеза сигналов в широкой полосе частот.

Схема прямого цифрового синтеза содержит три основных блока: генератор фазового угла, память и ЦАП. Генератор фазового угла в типичном случае представляет собой накапливающий сумматор с регистром. Работает он просто как регистр фазы, содержимое которого получает приращение на некоторый фазовый угол через заданные интервалы времени. Приращение фазы Dj загружается в виде цифрового кода во входные регистры. Память играет роль таблицы функций. Код текущей фазы поступает на ее адресные входы, а с выхода данных на вход ЦА-преобразователя поступает код, соответствующий текущему значению заданной функции. ЦАП в свою очередь формирует аналоговый сигнал.

Регистр содержит текущую фазу выходного сигнала в виде целого числа, которое будучи поделено на 2N, где N -разрядность сумматора, равно доле периода. Увеличение разрядности регистра повышает только разрешающую способность этой доли. Частота выходного сигнала равна произведению частоты тактов f такт на приращение фазы в каждом периоде тактов. При использовании N-разрядного сумматора частота выходного сигнала будет равна

Генераторы прямого синтеза выпускаются в виде ИМС. В частности, микросхема AD9850, упрощенная структура которой представлена на рис. 21, содержит 32-разрядный генератор фазового угла и 10-разрядный ЦАП. Загрузка приращения фазы осуществляется по 8-разрядной шине данных побайтово в четыре входных регистра. Память содержит таблицу синусов. Максимально допустимая тактовая частота составляет 125 МГц. При этом разрешение по частоте составляет 0,0291 Гц. Быстрый интерфейс позволяет менять частоту выходного сигнала до 23 миллионов раз в секунду.

Цифро-аналоговый преобразователь (ЦАП) предназначен для автоматического преобразования (декодирования) входных величин, представленных числовыми кодами, в соответствующие им значения непрерывно изменяющихся во времени (т.е. аналоговых) величин. Иными словами, ЦАП выполняет обратное по сравнению с АЦП преобразование. Выходные физические величины АЦП чаще всего представляют собой электрические напряжения и токи, но могут быть также временными интервалами, угловыми перемещениями и т. п. В системе автоматики с ЭВМ удобнее обрабатывать (преобразовывать и передавать) цифровой сигнал, но человеку (оператору) привычнее и удобнее воспринимать аналоговые сигналы, соответствующие значениям числовых кодов. С помощью АЦП информация вводится в ЭВМ, а с помощью ЦАП она выводится из ЭВМ для воздействия на управляемый объект и восприятия человеком.

В схемах ЦАП обычно используется представление двоичного числа, состоящего из нескольких разрядов, в виде суммы степеней числа 2. Каждый разряд (если в нем записана единица) преобразуется в аналоговый сигнал, пропорциональный числу 2 в степени, равной номеру разряда, уменьшенному на единицу.

На рис. 4.38 показана простая схема ЦАП, основу которой составляет резистивная матрица - набор резисторов, которые подключаются ко входу операционного усилителя ключами, управляемыми соответствующими разрядами двоичного числа. В качестве ключей могут быть использованы триоды (например МОП-транзисторы). Если в данном разряде записана 1, то ключ замкнут, если 0 - разомкнут.

Необходимость использования операционного усилителя обусловлена тем, что в ЦАП выходной сигнал является аналоговым. И входной, и выходной сигналы операционного усилителя представляют собой напряжения постоянного (в смысле неизменной полярности) тока.

Коэффициент передачи операционного усилителя равен отношению сопротивления резистора R о.с в цепи обратной связи к сопротивлению резистора на входе усилителя, которое, как видно из рис. 4.38, для каждого разряда имеет свое значение. Коэффициенты передачи K = - U вых /U оп по каждому разряду преобразуемого двоичного числа (если в этом разряде записана 1) соответственно равны: K 0 = R о.с /R 0 ; K 1 = 2R о.с /R 0 ; K 2 = 4R о.с /R 0 ;
K
3 = 8R о.с /R 0 . Выходное напряжение ЦАП

U вых = - U оп (K 3 + K 2 + K 1 + K 0) =

= - U оп (R о.с /R 0)(8x 3 + 4x 2 + 2x 1 + x 0),

где х принимает значение 1 или 0 в зависимости от того, что записано в данном разряде двоичного числа.

Рис. 4.38. Схема цифроаналогового
преобразователя на базе резистивной матрицы

Таким образом, четырехразрядное двоичное число преобразуется в напряжение U вых,которое может принимать 16 возможных значений от 0 до 15Du кв, где Du кв - шаг квантования.


Для уменьшения погрешности квантования необходимо увеличивать число двоичных разрядов ЦАП. При изготовлении интегральных микросхем ЦАП по данной схеме очень трудно сделать высокоточные резисторы с сопротивлениями, отличающимися друг от друга в десятки и сотни раз. Кроме того, нагрузка источника опорного напряжения U оп изменяется в зависимости от состояния ключей, поэтому необходимо применять источник с малым внутренним сопротивлением.

Схема ЦАП, показанная на рис. 4.39, свободна от указанных недостатков. В ней весовые коэффициенты каждого разряда задаются последовательным делением опорного напряжения с помощью резистивной матрицы типа R- 2R ,представляющей собой многозвенный делитель напряжения.

В данной схеме ЦАП используются двухпозиционные ключи , которые подсоединяют резисторы 2R либо ко входу операционного усилителя (при 1 в данном разряде), либо к общему нулевому проводу. Входное сопротивление резистивной матрицы при этом не зависит от положения ключей. Коэффициент передачи между соседними узловыми точками матрицы составляет 0,5. Выходное напряжение

U вых = - U оп (R /16R )(x 1 + 2x 2 + 4x 3 + 8x 4).

Рис. 4.39. Схема цифроаналогового преобразователя
на базе резистивной матрицы R-2R

Наибольшее влияние на погрешность ЦАП оказывают отклонения сопротивлений резисторов от их номинальных значений, а также то, что у реального ключа сопротивление в закрытом состоянии не равно бесконечности, а в открытом - не равно нулю. Выпускаемые резистивные матрицы имеют относительную погрешность около сотых долей процента, т.е. являются очень точными.

4.5.2. Аналого-цифровые преобразователи параллельного кодирования

Аналого-цифровой преобразователь (АЦП) предназначен для автоматического преобразования (измерения и кодирования) непрерывно изменяющихся во времени (т.е. аналоговых) величин в соответствующие значения числовых кодов. В данном случае под словом «цифра» понимается двоичный код. Когда говорят о цифровой звукозаписывающей и воспроизводящей аппаратуре или о цифровой телефонии, то подразумевают, что непрерывно изменяющийся звуковой сигнал записывается или передается оцифрованным, т.е. в виде двоичных (бинарных) кодов.

В зависимости от способа преобразования АЦП подразделяют на последовательные, параллельные и последовательно-параллельные.

Наиболее быстродействующими являются АЦП параллельного типа. Преобразование аналогового сигнала в код в них осуществляется за один шаг, но такие АЦП требуют нескольких компараторов. Входное напряжение одновременно сравнивается во всех компараторах с несколькими опорными напряжениями. Параллельные АЦП имеют большее число элементов, чем последовательные.

Рассмотрим работу параллельного трехразрядного
АЦП (рис. 4.40).

Рис. 4.40. Схема параллельного трехразрядного АЦП

Тремя двоичными разрядами можно представить восемь чисел - от 0 до 7. Поэтому используются семь компараторов для сравнения входного напряжения с опорными напряжениями, получаемыми с помощью резисторного делителя . От каждого компаратора поступает сигнал 0, если входное напряжение меньше опорного, и 1 - в противном случае.

Состояния компараторов и соответствующие им двоичные коды представлены в табл. 4.12. Преобразователь кода выдает двоичное трехразрядное число. Время преобразования параллельных АЦП может составлять несколько десятков наносекунд, что в сотни раз быстрее, чем у последовательных АЦП.

Таблица 4.12

Зависимость цифрового кода от входного напряжения

Относительное значение входного напряжения U = U вх /U оп Состояние компараторов Двоичный код-число
U < 0,5
0,5 £ U < 1,5
1,5 £ U < 2 ,5
2,5 £ U < 3,5
3,5 £ U < 4,5
4,5 £ U < 5 ,5
5,5 £ U<6 ,5
6,5 £ U

4.5.3. Аналого-цифровые преобразователи последовательного кодирования

На рис. 4.41 показана схема АЦП последовательного типа.

Рис. 4.41. Схема аналого-цифрового
преобразователя последовательного типа

По команде «Пуск» цифровой автомат ЦА вырабатывает последовательность двоичных чисел, которые поступают на вход цифро-аналогового преобразователя ЦАП, вырабатывающего напряжение U цап, соответствующее каждому входному двоичному сигналу. Это напряжение (непрерывно растущее, пока работает ЦА )подается на один из входов компаратора K , на другой вход которого поступает входное напряжение U вх.Компаратор сравнивает эти два напряжения и выдает сигнал при их равенстве. По этому сигналу ЦА останавливается, а на его выходе фиксируется двоичный код, соответствующий U вх.Таким образом, преобразование в последовательном АЦП происходит в ступенчатом режиме. Выходное значение отдельными шагами (тактами), т.е. последовательно, приближается к измеряемому значению. Поэтому последовательные АЦП на каждое преобразование аналогового сигнала затрачивают много времени. Для повышения их быстродействия используется метод поразрядного уравновешивания. Иллюстрирующая этот метод схема показана на рис. 4.42.

Рис. 4.42. Схема аналого-цифрового преобразователя
с поразрядным уравновешиванием

Роль цифрового автомата выполняет регистр Рг с датчиком тактовых импульсов ДТИ . Считывание выходного кода происходит по сигналу схемы готовности данных СГД ,который подается при поступлении сигнала от компаратора K о равенстве входного напряжения U вх и напряжения U цап. Работа компаратора синхронизирована импульсами ДТИ .Эти же импульсы последовательно переводят разряды регистра Рг в состояние 1. Перевод начинается со старшего разряда, а младшие остаются в состоянии 0. При этом ЦАП вырабатывает соответствующее напряжение, которое сравнивается в компараторе K с входным. Если U цап > U вх,то по команде компаратора старший разряд сбрасывается в состояние 0; если U цап < U m ,то в старшем разряде остается 1. Затем в состояние 1 переводится следующий по старшинству разряд Рг и снова производится сравнение напряжений U цап и U вх.Цикл повторяется до тех пор, пока не будет зафиксировано равенство указанных напряжений при переводе в состояние 1 какого-то из младших разрядов. После этого СГД подает сигнал о выдаче выходного кода. Число циклов сравнения в таком АЦП будет равно числу разрядов выходного кода.

4.6. Программируемые логические матрицы и интегральные схемы

В организации ПЗУ и программируемых логических матриц (ПЛМ) много общего. Выявим общий подход в построении этих схем на примере.

Предположим, что необходимо построить устройство, которое обеспечивает выдачу сигнала на выходе Y1 при поступлении на вход кодов 000, 001; на выходе Y2 при кодах 010, 100, 110; на выходе Y3 при кодах 011, 101, 110, 111. Подаваемые на вход устройства коды можно рассматривать как коды адреса одноразрядных ячеек ПЗУ, из которых считываемые единицы через элемент ИЛИ поступают на один из выходов Y i . Рассмотрим взаимосвязь между адресами и данными - функциями
(табл. 4.13).

На рис. 4.43, а представлена схема ПЗУ, состоящая из дешифратора адреса на логических элементах и запоминающих элементов в виде диодно-резистивных схем, в цепи которых включены перемычки. Переменные Х3 , Х2 , X1 рассматриваются как коды адресов различных ячеек памяти. Из табл. 4.13 видно, что в дешифраторе при определенных адресах возбуждаются соответствующие выходные шины, которые должны быть объединены на одном из выходов схемы: Y1 , Y2 , Y3 . Элементы ИЛИ, с помощью которых формируются сигналы Y i , представляют собой неполный шифратор.

Таблица 4.13

Таблица истинности дешифратора

Адрес Входы Выходы
Х3 Х2 XI Y1 Y2 Y3
А0 A1 А2 A3 А4 А5 А6 А7

На рис. 4.43, б представлена та же схема ПЗУ в виде двух матриц. Матрица А1 представляет собой полный линейный дешифратор на восемь выходов. Каждая вертикальная линия в А1 соответствует элементу И с тремя входами, на каждом из которых реализовано одно из сочетаний входных переменных Х3 , Х2 , X1 . Матрица А2 представляет собой неполный шифратор.

Рис. 4.43. Матрица ПЗУ, как основа ПЛМ

Каждая горизонтальная линия в А2 соответствует восьмивходовому элементу ИЛИ. О формировании необходимых сигналов на каждом из его входов говорит точка в месте пересечения вертикальной линии матрицы А1 и горизонтальной линии матрицы А2 .

Схемы, приведенные на рис. 4.43 могут быть реализованы в виде комбинационной схемы на ПЛМ (рис. 4.44).

Рис. 4.44. Комбинационная схема на ПЛМ

Сравнивая две схемы, выполняющие одни и те же функции (см. рис. 4.43, б и 4.44), видим, что схема, реализованная в виде ПЛМ, проще. Матрица А1 в ПЗУ - это полный, жестко программируемый дешифратор, в матрице ПЛМ - это программируемые под функции минтермы. Затраты на оборудование принято определять площадью полупроводникового кристалла , занимаемого схемой. Таким образом, схемы, выполненные на ПЛМ, обеспечивают большую степень интеграции и тем самым расширяют функциональные возможности микросхемы.

ГЛАВА 5.
ВЫЧИСЛИТЕЛЬНЫЕ СРЕДСТВА ОБРАБОТКИ ИНФОРМАЦИИ В СИСТЕМАХ АВТОМАТИКИ

5.1. Микропроцессоры в системах автоматизации текстильного производства

Цифровые микросхемы к настоящему времени достигли большого быстродействия при приемлемом токе потребления. Наиболее быстрые из цифровых микросхем обладают скоростью переключения порядка 3 - 5 нс. В этих микросхемах потребляемый ток прямо пропорционален скорости переключения логических вентилей в микросхеме.

Ещё одной причиной широкого распространения микропроцессоров стало то, что микропроцессор - это универсальная микросхема, которая может выполнять практически любые функции. Универсальность обеспечивает широкий спрос на эти микросхемы, а значит массовость производства. Стоимость же микросхем обратно пропорциональна массовости их производства, то есть микропроцессоры становятся дешёвыми микросхемами и тем самым ещё больше увеличивают спрос.

В наибольшей степени все вышеперечисленные свойства проявляются в однокристальных микроЭВМ или как их чаще называют по области применения: микроконтроллерах. В микроконтроллерах на одном кристалле объединяются все составные части компьютера: микропроцессор (часто называют ядро микроконтроллера), ОЗУ, ПЗУ, таймеры и порты ввода-вывода.

При переходе к комплексной автоматизации технологий текстильного производства и появлении средств для ее реализации в виде специализированных микропроцессорных подсистем управления (МПСУ) возник вопрос о многосвязанном регулировании ряда параметров . Это потребовало решения вопросов идентификации технологических процессов, их взаимосвязи и управляемости по параметрам, предлагаемым технологами в качестве регламентированных. С помощью МПСУ при комплексной автоматизации текстильных производств могут решаться следующие основные задачи.

1. Информационно-измерительные, обеспечивающие сбор обширной информации; помехозащищенность; необходимую обработку статистических данных, программную коррекцию погрешностей измерений, автоматическую диагностику и само-калибровку системы измерений. При этом программируемая логика работы МПСУ обеспечивает гибкость перенастройки и позволяет наращивать функции системы при модернизации без существенных схемных изменений.

2. Регулирование технологических параметров и режимов работы оборудования, позволяющих поддерживать регламентированные технологами параметры на заданном значении или изменять их для выполнения условий оптимизации в системах многосвязанного регулирования, быстродействия по времени, энергетических и качественных показателей. В любом случае качество регулирования определяется достоверностью измерений и получаемой информации.

3. Управление режимами работы технологического оборудования и средствами робототехники, реализуемыми преимущественно в виде автооператоров или автоманипуляторов, выполняющих операции, например, загрузки и разгрузки кип волокна, сновальных валиков и ткацких навоев, съема и установки бобин на шпулярники и прядильные машины, заправки патронами прядильных мест, присучки лент и узловязание и др.

Координация работы всех средств управления технологическим оборудованием, включая регулирование потоков сигналов во времени и пространстве, их обработку, осуществляется центральным устройством управления. Современные устройства центрального управления являются электронными и подразделяются на универсальные с использованием микроЭВМ и на специализированные с использованием микроконтроллеров, микропроцессоров и логических схем.

Применение принципа программного управления в системах автоматического управления и сбора данных о состоянии систем в сочетании с микропроцессорами существенно увеличило их функциональные возможности, обеспечило большую гибкость, уменьшило стоимость и габариты, повысило надежность, устойчивость к неблагоприятным условиям окружающей среды и другие эксплуатационные характеристики.

Микропроцессоры и микроконтроллеры на их основе нашли широкое применение в цифровых измерительных приборах и системах, что упростило ввод и выдачу данных, предупредительных сигналов или команд на дисплей, а также автоматическое масштабирование данных параметров. Микропроцессоры могут обеспечить самопроверку и самокалибровку, проверку согласованности данных, связь с микроЭВМ или приборами, управляемыми ЭВМ, и автоматическое усреднение показаний. Однако микропроцессоры и микроконтроллеры на их основе имеют меньший объем стандартного программного обеспечения, номенклатуру периферийных устройств и возможности интерфейса, чем микроЭВМ.

Микропроцессоры нашли также применение в терминалах, сетях микроЭВМ, модулях коммутации сообщений, ретрансляторах, системах накопления передачи данных, кодирующих и декодирующих устройствах, портативных системах связи, охраны и модемах.

Микропроцессоры используются в системных блоках микро-ЭВМ , контроллерах ввода-вывода и других периферийных устройствах. Микроконтроллеры в периферийных устройствах позволяют выполнять многие задачи на периферии, разгружая центральный процессор для выполнения других задач.

Микропроцессоры, микроконтроллеры и микро-ЭВМ находят применение в текстильном оборудовании: в системах контроля данных, установках контроля качества, автоматических взвешивающих и дозирующих системах, контроля узлов/машин, определения степени скручиваемости, контроллерах, управляющих отдельными операциями, например, натяжением нитей, лент, тканей и т.п., устройствах сортировки, погрузочно-разгрузочных устройствах, терминалах и устройствах автоматической диагностики.

Следует отметить, что при управлении технологическими процессорами текстильной промышленности относительно большое число регулируемых параметров и сложность алгоритмов управления требуют применение мощных микроЭВМ. Микропроцессоры находят применение в распределенных системах, в которых реализуются алгоритмы управления объектами на местах и готовятся данные для микроЭВМ, что повышает надежность систем в условиях производственных помех.

В новейших моделях микропроцессоров операционная система полностью или частично реализуется аппаратными средствами на основе флэш-памяти , что оптимизирует процесс управления промышленными объектами.

Министерство образования и науки Украины

Одесская национальная морская академия

Кафедра морской электроники

по дисциплине «Системы сбора и обработки телеметрической информации»

«Цифро-аналоговые преобразователи»

Выполнил:

к-т ФЭМ и РЭ

группы 3131

Струков С.М.

Проверил: ст. преподаватель

Куделькин И.Н.

Одесса – 2007


1. Введение

2. Общие сведения

3. Последовательные ЦАП

4. Параллельные ЦАП

5. Применение ЦАП

6. Параметры ЦАП

7. Список использованной литературы

ВВЕДЕНИЕ

Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).

Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.


Общие сведения

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

o По виду выходного сигнала: с токовым выходом и выходом в виде напряжения.

o По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода.

o По числу ЦАП на кристалле: одноканальные и многоканальные.

o По быстродействию: умеренного и высокого быстродействия.

Рис. 1. Классификация ЦАП

ПОСЛЕДОВАТЕЛЬНЫЕ ЦАП

ЦАП с широтно-импульсной модуляцией

Очень часто ЦАП входит в состав микропроцессорных систем. В этом случае, если не требуется высокое быстродействие, цифро-аналоговое преобразование может быть очень просто осуществлено с помощью широтно-импульсной модуляции (ШИМ). Схема ЦАП с ШИМ приведена на рис. 1а.


Рис. 1. ЦАП с широтно-импульсной модуляцией

Наиболее просто организуется цифро-аналоговое преобразование в том случае, если микроконтроллер имеет встроенную функцию широтно-импульсного преобразования (например, AT90S8515 фирмы Atmel или 87С51GB фирмы Intel). Выход ШИМ управляет ключом S . В зависимости от заданной разрядности преобразования (для контроллера AT90S8515 возможны режимы 8, 9 и 10 бит) контроллер с помощью своего таймера/счетчика формирует последовательность импульсов, относительная длительность которых g =t и /Т определяется соотношением

где N - разрядность преобразования, а D - преобразуемый код. Фильтр нижних частот сглаживает импульсы, выделяя среднее значение напряжения. В результате выходное напряжение преобразователя

Рассмотренная схема обеспечивает почти идеальную линейность преобразования, не содержит прецизионных элементов (за исключением источника опорного напряжения). Основной ее недостаток - низкое быстродействие.

Последовательный ЦАП на переключаемых конденсаторах

Рассмотренная выше схема ЦАП с ШИМ вначале преобразует цифровой код во временной интервал, который формируется с помощью двоичного счетчика квант за квантом, поэтому для получения N -разрядного преобразования необходимы 2 N временных квантов (тактов). Схема последовательного ЦАП, приведенная на рис. 2, позволяет выполнить цифро-аналоговое преобразование за значительно меньшее число тактов.

В этой схеме емкости конденсаторов С 1 и С 2 равны. Перед началом цикла преобразования конденсатор С 2 разряжается ключом S 4 . Входное двоичное слово задается в виде последовательного кода. Его преобразование осуществляется последовательно, начиная с младшего разряда d 0 . Каждый такт преобразования состоит из двух полутактов. В первом полутакте конденсатор С 1 заряжается до опорного напряжения U оп при d 0 =1 посредством замыкания ключа S 1 или разряжается до нуля при d 0 =0 путем замыкания ключа S 2 . Во втором полутакте при разомкнутых ключах S 1 , S 2 и S 4 замыкается ключ S 3 , что вызывает деление заряда пополам между С 1 и С 2 . В результате получаем

U 1 (0)=U вых (0)=(d 0 /2)U оп

Пока на конденсаторе С 2 сохраняется заряд, процедура заряда конденсатора С 1 должна быть повторена для следующего разряда d 1 входного слова. После нового цикла перезарядки напряжение на конденсаторах будет

Точно также выполняется преобразование для остальных разрядов слова. В результате для N -разрядного ЦАП выходное напряжение будет равно

Если требуется сохранять результат преобразования сколь-нибудь продолжительное время, к выходу схемы следует подключить УВХ. После окончания цикла преобразования следует провести цикл выборки, перевести УВХ в режим хранения и вновь начать преобразование.

Таким образом, представленная схема выполняет преобразование входного кода за 2N квантов, что значительно меньше, чем у ЦАП с ШИМ. Здесь требуется только два согласованных конденсатора небольшой емкости. Конфигурация аналоговой части схемы не зависит от разрядности преобразуемого кода. Однако по быстродействию последовательный ЦАП значительно уступает параллельным цифро-аналоговым преобразователям, что ограничивает область его применения.

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда - 2 2 =4, у второго - 2 1 =2 и у младшего (МЗР) - 2 0 =1. Если вес МЗР I МЗР =1 мА, то I СЗР =8 мА, а максимальный выходной ток преобразователя I вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствовать I вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением


При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде - 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.



Простейшим цифроаналоговым преобразователем (ЦАП) является одноразрядный преобразователь. В качестве такого ЦАП может служить простой усилитель-ограничитель, в качестве которого можно применить . Особенно хорошо подойдет выполненный по КМОП технологии, так как в данной технологии выходные токи единицы и нуля равны. такого цифро-аналогового преобразователя приведена на рисунке 1.


Рисунок 1. Принципиальная схема одноразрядного цифро-аналогового преобразователя (ЦАП)

Одноразрядный ЦАП преобразует в аналоговую форму знак числа. Для цифро-аналогового преобразования на очень высокой частоте дискретизации, во много раз превышающей частоту Котельникова, такого преобразователя вполне достаточно, однако, в большинстве случаев для качественного цифро-аналогового преобразования требуется большее количество разрядов. Известно, что двоичное число описывается следующей формулой:

(1)

Для преобразования цифрового двоичного кода в напряжение можно воспользоваться данной формулой непосредственно, т. е. применить аналоговый сумматор. Токи будем задавать при помощи резисторов. Если резисторы будут отличаться друг от друга в два раза, то и токи тоже будут подчиняться двоичному закону, как показано в формуле (1). Если на выходе регистра будет присутствовать логическая единица, то она будет преобразована в ток, соответствующий двоичному разряду при помощи резистора. В этом случае напряжений будет работать в качестве цифроаналогового преобразователя. Схема ЦАП, работающего по описанному принципу, приведена на рисунке 2.


Рисунок 2. Принципиальная схема четырехразрядного цифро-аналогового преобразователя с суммированием весовых токов

На схеме, приведенной на рисунке 2, потенциал второго вывода равен нулю. Это обеспечивается параллельной отрицательной обратной связью, которая уменьшает входное сопротивление операционного усилителя. Коэффициент передачи выбирается при помощи резистора, включенного с выхода на вход операционного усилителя. Если требуется единичный коэффициент передачи, то это сопротивление должно быть равно параллельному сопротивлению всех резисторов, подключенных к выходам параллельного регистра. В описанном устройстве ток младшего разряда будет в восемь раз меньше тока старшего разряда. Для уменьшения влияния входных токов реального операционного усилителя между его неинвертирующим входом и общим проводом включается резистор с сопротивлением равным параллельному включению всех остальных резисторов.

Учитывая, что на выходе всех разрядов регистра присутствует или нулевое напряжение или равное напряжению питания, на выходе операционного усилителя напряжение будет действовать в диапазоне от нуля до минус напряжения питания. Это не всегда удобно. Если нужно, чтобы устройство работало от одного источника питания, то ее нужно немного изменить. Для этого на неинвертирующий вход операционного усилителя подадим напряжение, равное половине питания. Его можно получить от резистивного делителя напряжения. Ток нуля и ток единицы выходного каскада регистра в новой схеме должны совпадать. Тогда на выходе операционного усилителя напряжение будет меняться в диапазоне от нуля до напряжения питания. Схема цифро-аналогового преобразователя с однополярным питанием приведена на рисунке 3.



Рисунок 3. Цифро-аналоговый преобразователь с однополярным питанием

В схеме, приведенной на рисунке 3, стабильность выходного тока и напряжения обеспечивается стабильностью напряжения питания параллельного регистра. Однако обычно напряжение питания цифровых микросхем сильно зашумлено. Этот шум будет присутствовать и в выходном сигнале. В многоразрядном цифро-аналоговом преобразователе это нежелательно, поэтому его выходные ключи запитываются от высокостабильного малошумящего . В настоящее время подобные микросхемы выпускаются рядом фирм. В качестве примера можно назвать ADR4520 фирмы Analog Devices или MAX6220_25 фирмы Maxim Integrated.

При изготовлении многоразрядных цифро-аналоговых преобразователей необходимо изготавливать резисторы с высокой точностью. Раньше это достигалось лазерной подгонкой резисторов. В настоящее время в качестве источников тока обычно используются не резисторы, а генераторы тока на полевых транзисторах. Применение полевых транзисторов позволяет значительно сократить размеры кристалла ЦАП. При этом для увеличения тока транзисторы соединяют параллельно. Это позволяет добиться высокой точности соответствия токов двоичному закону (i 0 , 2i 0 , 4i 0 , 8i 0 и т.д.). Высокая скорость преобразования достигается при малом сопротивлении нагрузки. Схема преобразователя цифрового кода в выходной ток, работающего по описанному принципу приведена на рисунке 4.



Рисунок 4. Внутренняя схема ЦАП с суммированием токов

Естественно, электронные ключи, показанные на рисунке 4, тоже представляют собой полевые транзисторы. Однако если их показать на схеме, то можно запутаться где ключ, а где генератор тока. Так как полевой транзистор может одновременно работать в качестве генератора тока и электронного ключа, то их часто объединяют, а двоичный закон формируют при помощи , как это показано на рисунке 5.



Рисунок 5. Внутренняя схема ЦАП с суммированием одинаковых токов

В качестве примера микросхем, где используется решение с суммированием тока, можно назвать ЦАП AD7945. В ней суммирование токов применяется для формированиястарших разрядов. Для работы с младшими разрядами используется . Для преобразования выходного тока в напряжение обычно применяется операционный усилитель, однако его скорость нарастания выходного напряжения оказывает существенное влияние на быстродействие цифро-аналогового преобразователя в целом. Поэтому схема ЦАП с операционным усилителем используется только в широкополосных схемах, таких как преобразование звукового или телевизионного сигнала.


Рисунок 6. Цифро-аналоговый преобразователь двоичный код-напряжение

Литература:

Вместе со статьей "Цифроаналоговые преобразователи (ЦАП) с суммированием токов" читают:


http://сайт/digital/R2R/


http://сайт/digital/sigmaadc.php