Эволюция убивает экстремальный разгон? Технология Dual Graphics

Разгон различных аппаратных компонентов компьютера (называемый также оверклоккингом) - это одновременно и хобби, и профессиональная необходимость для широкого круга IT-специалистов. Каждая микросхема ускоряется согласно особым алгоритмам. Процессор, как главный чип ПК, тоже.

Разгонять процессор, с одной стороны, несложно. Как правило, дело ограничивается внесением в определенного рода настройки буквально нескольких изменений. Однако определение того, какого рода цифры и показатели должны в них присутствовать, подчас требует едва ли не инженерных, профессиональных знаний. Неспроста оверклоккинг - это прерогатива далеко не только любителей, но и опытных IT-специалистов.

В среде IT-экспертов есть версия, что самые разгоняемые микросхемы производит канадская компания AMD. Поэтому чипы этой марки пользуются у оверклоккеров особой популярностью. Конечно, у отмеченной точки зрения есть ярые противники, считающие, что извечный конкурент канадцев - компания Intel (к слову, пока уверенно выигрывающая в аспекте объемов мировых продаж) - способен выпускать микросхемы, совместимые с процедурами разгона ничуть не хуже. Однако, как считают многие специалисты, чипы от AMD обладают способностью разгоняться по меньшей мере на 20%, а то и больше. Быть может, допускают они, микросхемы от Intel и способны показывать лучший результат, однако гарантированное ускорение AMD безотносительно конкретной марки чипа, скорее всего, будет смотреться предпочтительнее.

Как разогнать процессор AMD и добиться при этом оптимальной производительности? Какие нюансы ускорения микросхемы учитывать? Какими программами пользоваться?

Зачем разгонять процессор?

Как мы уже сказали, разгон - это способ искусственного увеличения производительности процессора (а вслед за ним - также и всего компьютера в целом). Осуществляется эта операция, как правило, посредством внесения в настройки работы главной микросхемы ПК соответствующих изменений. Несколько реже разгон осуществляется аппаратными способами (оно и понятно - есть вероятность повредить процессор). Изменение программных настроек так или иначе связано с увеличением значений тактовой частоты работы чипа. Если в заводском состоянии процессор работает, скажем, на 1,8 ГГЦ, то посредством разгона этот показатель можно увеличить до 2-2,5 ГГЦ. При этом компьютер с высокой вероятностью продолжит работать стабильно. Более того, вполне возможно, что на нем будут загружаться игры и приложения, которые процессор в заводском состоянии не потянул бы. Таким образом, разгон - это еще и способ увеличения функциональности ПК.

Самые ускоряемые процессоры AMD

Лучший процессор AMD для разгона - какой он? Эксперты рекомендуют обратить внимание на следующие модели микросхем. Из числа недорогих чипов - процессор Athlon 64 3500. Несмотря на то что он одноядерный и далеко не самый современный, его архитектура, как признаются специалисты, хорошо совместима с разгоном. Если брать чипы подороже, можно обратить внимание на микросхему Athlon 64 X2. Однако наибольшей, по мнению многих экспертов, способностью к разгону обладает процессор AMD FX в широком спектре модификаций. Безусловно, каждая из моделей обладает разной совместимостью с ускорением. Нередко бывает, что микросхемы одной серии, но с разными индексами, показывают в ходе тестирования производительности в разогнанном состоянии совершенно разные результаты. Есть даже случаи, когда чипы одинаковых марок, возможности которых изучаются параллельно на отдельных компьютерах, ведут себя очень непохоже.

Сравнение производительности процессоров AMD по факту разгона пытаются проводить многие IT-специалисты. Но вне зависимости от получаемых результатов (которые, как мы уже сказали выше, даже для чипов одной марки на разных ПК могут отличаться), эксперты отмечают закономерность: по мере роста технологичности микросхем канадская компания-производитель, как правило, расширяет возможности для разгона своих чипов.

Подготовка к разгону

Прежде чем приступать к разгону процессора, следует осуществить некоторую подготовительную работу. Условно ее можно поделить на два этапа - аппаратный и программный. В рамках первого самая главная задача - обзавестись качественной системой охлаждения. Дело в том, что разгон процессора практически всегда сопровождается повышением температуры работы микросхемы (результатом этого может стать нестабильность ее функционирования и даже выход из строя). Высока вероятность того, что штатный кулер не сможет охлаждать чип в достаточной мере эффективно. Поэтому, если мы решили заняться оверклоккингом, покупаем для процессора хороший вентилятор.

Касательно софтверного этапа подготовительной работы следует сказать, что важно обзавестись соответствующим ПО. Нам понадобится хорошая программа для разгона процессора. В принципе, можно обойтись и штатным инструментом в виде интерфейса BIOS (тем более, что значительная часть нашей работы будет проводиться именно в нем). Но опытные специалисты все же рекомендуют задействовать также и сторонний софт. Какая программа для разгона процессора AMD лучшая? По мнению многих экспертов, это AMD OverDrive. Ее главное достоинство - универсальность. Она в одинаковой степени хорошо подходит для разгона большинства моделей процессоров от канадского бренда.

Также нам пригодится программа для измерения температуры процессора в режиме реального времени через Windows. Вполне подойдет утилита типа SpeedFan. Ее, так же, как и AMD OverDrive, можно легко скачать посредством простейших запросов в поисковых системах.

Важнейший параметр - частота

Как мы уже сказали выше, производительность процессора определяется главным образом его частотой. Но это далеко не единственный параметр подобного рода. Есть также и другие важнейшие частоты:

Северного моста;

Канала HyperTransport (используемого в большинстве современных процессоров AMD).

Основное правило, касающееся соотношения частот: значение для северного моста должно быть идентичным тому, что выставлено для HyperTransport (или чуть больше). С памятью все несколько сложнее (но мы и не будем разгонять ее в данном случае, поэтому нюансы, связанные с ОЗУ, сейчас в расчет не берем).

Как таковая частота для каждого из указанных компонентов рассчитывается по простой формуле. Берется установленный для конкретной микросхемы множитель, а затем вычисляется произведение его и так называмой базовой частоты. Оба параметра пользователь может менять в настройках BIOS.

Завершив небольшой теоретический экскурс, переходим к практике.

Работаем с программой OverDrive

Как мы уже сказали выше, AMD OverDrive, по мнению многих специалистов - лучшая программа для разгона процессора под канадским брендом. По крайней мере, как отмечают эксперты, она идеально подходит для типично разгонной серии чипов AMD 700. Нет никаких проблем с тем, полагают специалисты, как разогнать процессор AMD Athlon в большинстве модификаций.

Открыв утилиту, сразу же нужно перевести ее в режим работы, который называется Advanced. Затем выбираем опцию Clock/Voltage. Устанавливаем галочку напротив строчки Select All Cores. После этого мы можем начинать увеличивать частоту процессора через множитель. Характеристики процессоров AMD, как правило, позволяют сразу же выставлять цифру от 16-ти (при базовой частоте по умолчанию - 200 МГЦ). Если компьютер работает стабильно, температура чипа не превышает 75 градусов (измеряем с помощью программы SpeedFan или ее аналога), то можно попробовать повысить множитель до 17 и более единиц.

Стоит ли повышать напряжение?

Некоторые оверклоккеры говорят о полезности изменения не только частоты чипа, но также и напряжения. Утилита для разгона процессора AMD, которой мы пользуемся, позволяет это сделать. Эксперты рекомендуют: напряжение лучше повышать крайне малыми порциями. Нужно добавлять буквально по 0,05 вольт, а затем измерять стабильность системы и температуру чипа. Если все параметры в норме, то добавлять еще по столько же.

Работаем с BIOS

Программа для разгона процессора AMD, возможности которой мы изучили выше - не единственный инструмент для ускорения работы чипа. Не меньшие возможности, как признают многие эксперты, дает интерфейс BIOS. Он, как известно, есть в каждом компьютере. Ничего дополнительно в части софта устанавливать не нужно. Как разогнать процессор AMD через BIOS?

Первым делом заходим в программный интерфейс этой системы (обычно это делается нажатием клавиши DEL в самом начале загрузки компьютера). Названия пунктов меню очень разные, в зависимости от конкретной модели материнской платы. Поэтому вполне возможно, что какие-то значения в нижеприведенной инструкции не будут совпадать по расположению с фактическими. В этом случае пользователю стоит заглянуть в заводское руководство к материнской плате - оно обычно прилагается при поставке компьютера.

Опции, связанные с разгоном процессора, как правило, расположены в разделе Advanced главного меню. Пункт, в котором содержатся настройки по частоте, во многих случаях звучит как JumperFree Configuration. Для того чтобы выставлять нужные значения вручную, следует задать для строчки AI Overclocking параметр Manual. После этого у пользователя будет возможность менять настройки частот и множителей.

Правила выставления значений для каждого из параметров те же, что и в программе AMD OverDrive. Не следует слишком увлекаться большими цифрами для множителей и резким повышением напряжения. Также нужно иметь в виду, что если мы увеличиваем производительность процессоров AMD через BIOS, то для активизации выставленных настроек всякий раз нужно перезагружаться (предварительно сохранив значения - как правило, для этого нужно, вернувшись в главное меню, нажать клавишу F10). Это, как справедливо считают многие пользователи, менее удобно, чем через программу OverDrive.

Вместе с тем, как считают некоторые эксперты, интерфейс BIOS позволяет в некоторых случаях (все зависит от конкретной модели материнской платы) работать с расширенными настройками частоты процессора и множителей. В частности, через BIOS можно отключать режимы энергосбережения, которые могут ограничивать интенсивность оборотов кулера, которые при разгоне должны быть как раз таки максимальными.

Как выйти на максимум частоты?

Один из ключевых моментов разгона - поиск предельных значений для частоты чипа. Как разогнать процессор AMD по-максимуму? Главное здесь, отмечают эксперты - выявить предельные значения для всех компонентов формулы, о которой мы рассказали выше. То есть оверклоккеру предстоит экспериментировать не только с множителем, но также и с базовой частотой. Эксперты рекомендуют выявлять ее предельное значение очень постепенно. При этом повышать множитель (а также напряжение) не рекомендуется. Критерий достижения максимального значения базовой частоты - общая стабильность системы при сохраняющейся, разумеется, температуре процессора в пределах нормы.

Частоты других компонентов

Как мы уже сказали выше, помимо частоты чипа, есть и иные параметры, важные с точки зрения общего быстродействия компьютера. Какие здесь есть закономерности? Как разогнать процессор AMD и одновременно другие аппаратные компоненты - такие как память, северный мост и канал HyperTransport?

Специалисты отмечают, что лучше всего поддается увеличению частоты именно ОЗУ. В частности, модули, штатное значение для которых - 800 МГЦ, можно разогнать до уровня 1000 МГЦ и выше. В свою очередь, частота северного моста эффективно увеличивается повышением его напряжения. При этом, к слову, может также увеличиться производительность некоторых контроллеров. Частоту же HyperTransport, как мы уже сказали выше, лучше не делать завышенной. Пусть она будет равна значениям, выставленным для северного моста. Специалисты отмечают, что ее можно и не менять - тот факт, что частота HyperTransport ниже, чем у северного моста, как правило, не влияет на общую производительность компьютера, работающего на процессоре AMD.

Разгоняем процессор FX

Как мы уже сказали выше, чип AMD FX, по признанию многих экспертов - один из самых лучших для разгона. Каковы особенности его ускорения? Как правильно осуществлять разгон процессоров AMD FX?

В самом начале мы говорили об этапах, предшествующих ускорению. Это правило актуально и для работы с FX. Что касается аппаратного этапа, то, не считая установки мощного кулера, необходимо провести еще одну, очень рекомендованную многими специалистами, процедуру - замену заводской термопасты на свежую. Для этого нам предстоит снять крышку корпуса системного блока и вынуть процессор с разъема материнской платы. Это нужно делать предельно аккуратно - поверхность чипа очень чувствительна к внешнему воздействию. Термопасту следует нанести тонким, равномерным слоем.

Программный этап подготовки к разгону FX будет включать в себя несколько иные процедуры в сравнении с теми, что мы описали в начале статьи. AMD OverDrive в данном примере мы использовать не будем. Однако нам пригодится другая полезная утилита - CPU-z - она предназначена для отслеживания значений частоты процессора в реальном времени. Скачать ее можно на большом количестве порталов. Запрос простой: "скачать CPU-z".

Итак, мы вновь заходим в BIOS. В очень многих моделях материнских плат, на которые устанавливается процессор FX, стоит современный интерфейс UEFI. Поэтому эта небольшая инструкция рассчитана на работу в нем. Зайдя в UEFI BIOS, пользователю стоит выбрать пункт Extreme Tweaker. В открывшемся окошке нужно найти строчку CPU Ratio. Значение, установленное по умолчению, следует заменить на цифру 24.

Чуть ниже - строчка NB Voltage. Там нужно активизировать опцию Manual, которая позволит нам выставить напряжение вручную: ставим цифру 1,5 вольт. Следующая интересующая нас настройка - Power Control. Она - чуть выше NB Voltage. Выбрав ее, устанавливаем там значение Ultra High для Load Line Calibration.

Возвращаемся в главное меню UEFI. Находим пункт CPU Configuration и выбираем строчку Cool and Quiet. Выставляем значение Disabled. Сохраняем изменения в настройках BIOS, нажав клавишу F10. Перезагружаемся.

Дожидаемся загрузки Windows и запускаем CPU-z. Изучаем логи программы. Если выставленная нами частота (расчетно она должна составить примерно 115-120% от заводской) выдерживается в стабильных значениях, значит, разгон удался.

В июне 2011 г. компания AMD запустила первую линейку APU (ускоренных процессорных устройств) серии А на базе Llano, которая в одном кристалле объединила архитектуру K10 с ГПУ Radeon. Но, к сожалению тех, кто хотел бы воспользоваться новым продуктом, первый его запуск с компонентами, носящими кодовое название Husky, был нацелен на производителей ноутбуков и производителей ПК. Таким образом, каждый желающий создать собственный персональный компьютер на базе Llano, должен был ожидать своей очереди, чтобы получить доступ к новым С официальным запуском настольных версий APU серии A Llano под кодовым названием Lynx это ожидание закончилось.

AMD A8-3850: обзор архитектуры

Подобно маломощным ускоренным процессорам серии Е на базе Brazos, выпущенным AMD в феврале 2011 г., архитектура Lynx ознаменовала смену стратегического направления производителя в сторону более интегрированного подхода. Компания заявила, что A-серия представляет собой первую линейку процессоров, которая наряду с 4-ядерным ЦПУ предлагает встроенный графический чип в надежде, что рынок смирится с низкоэффективными гибридными чипами, которые окажутся в офисах и бюджетных ПК. AMD начала эту революцию выпуском 4-х APU, относящихся к сериям A8 и A6. Они отличались, как тактовой частотой, так и встроенными устройствами обработки графики. Пара ядер A8 имеет 400 потоковых процессоров графического чипа Radeon HD 6550D, а A6 - 320 в HD 6530D. При этом первый APU работает быстрее второго, поскольку обладает более высокой частотой ядра, равной 600 МГц против 443.

Линейка дополнительно подразделяется на модели с разной тактовой частотой. Два 4-ядерных ускоренных процессора верхнего ценового диапазона серий A8 и A6, APU AMD A8-3850 и A6-3650, используют тактовые частоты 2,9 и 2,6 ГГц соответственно (хотя эти значения снижаются в состоянии ожидания благодаря Cool"n"Quiet), и отличаются довольно внушительной потребляемой мощностью, равной 100 Вт.

Два младших представителя линейки, А6-3600 и А8-3800, также поддерживают технологию Turbo Core. Это означает, что их быстродействие динамически изменяется в зависимости от предъявляемых к ним требований. A8-3800 использует тактовую частоту 2,4 ГГц, повышая ее до 2,9 ГГц при включенном Turbo Core, а А6-3600 - на 2,1 ГГц, доводя их до 2,4. Оба эти гибридные процессорные устройства потребляют гораздо меньшую мощность - лишь 65 Вт.

Ядра, которые обеспечивают такую плавающую частоту, основаны на дизайне с довольно претензионным названием Stars. В действительности же это просто улучшенная 32-нанометровая версия 45-нм Phenom II. Это означает, что ЦПУ в чипе AMD по-прежнему базируется на устаревшей архитектуре K10, которая в прошлом плохо соперничала с Intel Core. Однако ускоренный процессор Lynx предлагает функцию, отличную от конкурирующих чипов Intel. Это скорость взаимодействия с оперативной памятью. Каждая из моделей серии A поддерживает DDR3, работающую на частоте до 1866 МГц, а не 1333 МГц, как того требуют бюджетные чипы Intel. Поскольку эта память распределена между центральным и графическим процессорными устройствами, она может обеспечить легкий прирост производительности графики благодаря использованию более быстрого ОЗУ.

Также архитектура Llano включает выделенный унифицированный видеодекодер UVD, который позволяет при воспроизведении видео без поддержки ускорения видео DirectX разгрузить ЦПУ и ГПУ.

В дополнение к выпуску A8 и A6 компания AMD предлагает пару чипсетов для материнских плат под названием A55 и A75. Каждый из них поддерживает RAID и жесткие диски размером более 2,2 ТБ, но чипсет премиум-класса A75 также позволяет иметь 4 порта USB 3 и 6 разъемов SATA, работающих со скоростью 6 Гбит/с.

В графической части APU 400 потоковых процессоров производят операции на частоте 600 МГц и разделены на 5 SIMD-блоков с общим регистром и блоком тесселяции, а также на 20 блоков обработки текстур и 8 ROP.

Особенности архитектуры

Процессор высокого класса AMD A8-3850 стоимостью 135 долларов США составляет прямую конкуренцию 2-ядерному i3-2100. Чип включает 4 ядра Star, которые работают с частотой 2,9 ГГц. Они выполнены по 32-нанометровой технологии, которая обеспечивает 6-процентное увеличение полезной площади кристалла по сравнению с 45-нм процессом предыдущего поколения Athlon II. Каждому ядру выделены 128 Кбайт кэша 1-го уровня и 1 МБ L2. Третий, более крупный уровень у APU отсутствует.

Под серию А специально создавался 905-контактный разъем FM1 AMD A8-3850, т. к. возникла необходимость вывода видео с процессора на разъемы DVI, VGA и HDMI материнской платы. Конечно, ни о какой обратной совместимости предыдущих моделей ЦПУ AMD и речи быть не может. Несмотря на изменение сокета спецификации отведения тепла не изменились. Все существующие кулеры должны по-прежнему оставаться совместимыми, так как они соответствуют расчетной тепловой мощности чипа.

Кроме того, под интегрированным тепловым рассеивателем находится процессор обработки графики Radeon HD 6550D, работающий при 600 МГц. Это выглядит довольно слабым по сравнению с 850 МГц, используемыми HD Graphics 2000 в i3-2100. Однако ГПУ AMD снабжено колоссальным количеством потоковых процессоров (400) и текстурных блоков (20) по сравнению с 6-ю небольшими исполнительными модулями у Intel. A8-3850 также превосходит i3-2100 с точки зрения возможностей, поскольку первый чип обеспечивает полную поддержку DirectX 11, тогда как второй совместим лишь с 10-й версией.

Характеристики AMD A8-3850 APU поддерживаются рядом уникальных функций, включая технологию Dual Graphics. Подобно технологии CrossFire для обеспечения дополнительной мощности она позволяет встроенному графическому процессору объединяться с другими совместимыми дискретными видеокартами компании-производителя. Данная функция активирована в БИОС ASRock по умолчанию, поэтому достаточно вставить видеокарту, и материнская карта с драйверами AMD A8-3850 сделает все остальное. Имеются и некоторые ограничения. Технология работает в играх, поддерживающих DirectX 11 и 10. С DX9 Dual Graphics функционирует, но в данном случае производительность не является оптимальной. С архитектурой Llano компания-производитель также впервые продемонстрировала асинхронный многопроцессорный рендеринг, который позволяет распределять различные рабочие нагрузки между центральным и графическим процессорами. Поддерживается совместимость только с низкопроизводительными ГПУ AMD, включая HD 6670 1 ГБ, HD 6570 1 ГБ, HD 6450 512 МБ и HD 6350 512 МБ.

Разгон AMD A8-3850

Как можно видеть, архитектура Lynx не нацелена на энтузиастов высокой производительности. В результате этого возможности разгона процессора AMD A8-3850 также ограничены. Например, пользователи обрадовались, узнав о том, что был скопирован дизайн встроенного генератора Intel. Это означает, что все тактовые частоты по всей плате связаны друг с другом. Как можно было видеть в системах Sandy Bridge, эта настройка, по сути, делает невозможным разгон через базовые частоты (или опорные, если говорить о APU Llano), так как их увеличение более чем на 5% может привести к нестабильности в подсистемах SATA и USB. Учитывая тот факт, что у процессоров серии A блокирован множитель ЦП, мало надежд на то, что скорость AMD A8-3850 превысит 2,9ГГц на основе 100-МГц опорных тактовых импульсов и множителя 29x.

Но пользователи были заинтригованы тем, что A75 Pro4, которую они использовали для тестирования, позволила увеличить множитель до 36х, что привело к общей частоте 3,6 ГГц. Однако, несмотря на сообщение CPU-Z о достижении вышеуказанного значения, фактически множитель не изменился. Результаты тестов были идентичны показателям производительности при 2,9 ГГц. Попытки разгона AMD A8-3850 оказались практически бесплодными, так как пользователям удалось добиться лишь увеличения на 5 МГц, что привело к росту частоты процессора до значения 3,4 ГГц, а ГПУ - до 630 МГц. Согласно производителю, это связано с тем, что некоторые из материнских плат имеют возможность блокировать SATA и USB, чтобы позволить больший разгон. Тот же источник утверждает, что в некоторых платах есть невидимые делители, которые включаются для SATA и USB на определенных опорных тактовых частотах. Это может означать, например, что 133 МГц приводят к стабильному разгону процессора AMD A8-3850, тогда как при 120 МГц этого добиться невозможно просто потому, что больший опорный такт инициирует использование более высокого делителя SATA/USB.

По отзывам пользователей, эта информация для разгона оказалась не очень полезной, так как материнская плата решительно отказывалась загружаться на любой опорной частоте выше 105 МГц.

Cinebench R11.5

Данный тест использует Maxon"s Cinema 4D для рендеринга очень сложной фотореалистичной сцены с отражениями, объемным светом и процедурными шейдерами, значительно нагружающими ЦПУ. Поскольку в нем задействованы объекты реального мира, которые встречаются в таких фильмах, как Spider-Man и Star Wars, то Cinebench R11.5 можно рассматривать как тест реального окружения. По отзывам пользователей, в нем процессор набрал 3,33 балла при 2,9 ГГц и 3,51 балл при 3,04 ГГц. Конкурент Core і3-2100 при этом набрал 3 балла.

WPrime

Это многопоточный тест математических вычислений с контринтуитивным использованием квадратных корней, а не простых чисел. В стандартном испытании используется набор из 32 млн чисел и вычисляются квадратные корни каждого из них с рекурсивным вызовом метода Ньютона в качестве оценочной функции. WPrime прекрасно масштабируется по нескольким ядрам центрального процессорного устройства и может загрузить их полностью на 100%. Итог вычислений выражается количеством времени, затраченным на нахождение квадратного корня всего набора из 32 млн чисел. Чем ниже балл, тем выше производительность. По отзывам пользователей, результат AMD A8-3850 - 14,443 c и 13,635 c (при 2,9 и 3,04 ГГц). Core і3-2100 считает дольше. На все вычисления процессор Intel затрачивает 18,090 с.

Left 4 Dead 2

По отзывам пользователей, запуск данной игры в разрешении 1280 x 720, 0х АА, 16х AF и высокими установками качества изображения позволяет добиться минимум 54 и в среднем 76 к/c при 2,9 ГГц тактовой частоты и соответственно 60 и 80 к/с при разгоне до 3,04 ГГц. Процессор Core і3-2100 обеспечивает частоту кадров 13 и 22 к/с.

Call of Duty: Black Ops

По отзывам пользователей, игра тестировалась с установкой максимальной детализации в игровом меню. Так как наибольшая частота кадров по умолчанию ограничена значением 91 к/с, то в файле конфигурации ее пришлось увеличить до 250 к/с. Запуск 90-секундного фрагмента многопользовательской игры, воспроизводимого через отличный встроенный плеер, с установками, аналогичными с предыдущим тестом, показал наименьшую скорость обновления экрана, равную 30 к/с, а ее среднее значение составило 54 к/с. Для разогнанного процессора данные показатели увеличились до 33 и 60 к/с соответственно. Конкурирующий процессор Intel Core продемонстрировал неприемлемые 11 и 20 к/с.

Потребляемая мощность

Для всех тестов производительности, которые проводили пользователи процессора, были отключены все энергосберегающие технологии, чтобы можно было получить адекватные результаты и представить наилучшие показатели работы, несмотря на то, что таким технологиям, как SpeedStep Intel, для запуска требуются микросекунды, что в некоторых случаях может сказаться. Однако для оценки характеристик процессора AMD A8-3850 в области энергопотребления весь функционал задействовался в полной мере, чтобы с помощью внешнего ваттметра можно было определить реальную потребляемую мощность, поэтому результаты представляют общую мощность системы, а не энергопотребление самого ЦП. Отдельный замер потребления любого отдельного компонента ПК практически невозможен.

По отзывам пользователей, в режиме ожидания, когда на экране ПК нет ничего, кроме рабочего стола Windows 7 с активированным Aero, общее потребление системы на базе AMD A8-3850 Quadcore составляет 47 Вт, а Intel Core і3-2100 - 40 Вт. Анализ энергоэффективности процессора, когда под нагрузкой находятся, как ЦПУ, так и ГПУ, для тестируемой модели дал результат 92 Вт. У конкурента данный показатель оказался значительно меньше - всего 66 Вт.

Анализ производительности

Для сравнения результатов тестирования AMD A8-3850 использовался процессор Core і3-2100, продававшийся по аналогичной цене, а также сравнимые материнские платы, выбранные таким образом, чтобы общая стоимость системы для двух испытательных стендов была примерно одинаковой. Проверка производительности для оцениваемой модели началась хорошо, так как ее оценка в Cinebench 11.5 (3,33) на 0,33 опередила конкурента Intel. Аналогичная ситуация возникла и в тесте WPrime 32M. Процессор А8-3850 со временем 14,443 с намного опередил конкурента, результат которого - 18,090 с. Причина этого заключается во вдвое большем количестве ядер. Именно в этих тестах дополнительные мощности дают максимальное преимущество.

Более жесткая проверка в форме обработки мультимедийных файлов пользуется преимуществом мультипроцессорных вычислений, но также вознаграждает процессоры, которые выполняют большее количество инструкций за такт. Чип і3-2100 доминирует именно в этой области, потому что архитектура Sandy Bridge способна обрабатывать гораздо больше данных, чем стареющая архитектура K10.

Тест на редактирование изображений оценил AMD A8-3850 2 90 GHz в 888, а i3-2100 - в 1331 баллов, что оказалось на 49% лучше. То же повторилось и в других тестах, при этом A8-3850 отстал на 28% в кодировании видео, которое обычно вознаграждает процессоры с дополнительными ядрами. Общая оценка A8-3850 составила 1059 баллов, что значительно отстает от 1476 очков у процессора Intel.

Однако основным преимуществом APU Llano, по отзывам пользователей, является его улучшенная производительность в 3D-играх. Может ли он стать основой для дешевого игрового ПК? Или же графические процессоры начального уровня обречены? Ответом на оба вопроса будет решительное «Да!».

При разрешении экрана 1280 x 720 точек с 0x AA процессор AMD A8-3850 APU в L4D2 обеспечивает минимальную частоту кадров, равную 54 к/с, со всеми настройками, установленными на высоком уровне. Это отличный результат, который означает, что теперь, наконец, появилась возможность построить систему домашнего кинотеатра, позволяющую играть в разрешении 720p без необходимости установки отдельной графической карты. Для сравнения, минимальная частота кадров процессора i3-2100 в 13 к/с при тех же настройках играть практически не позволяет. В игре L4D2 А8-3850 так же хорошо работает и при более высокой четкости изображения. При разрешении 1680 x 1050 пикселей APU обеспечивает минимальную частоту кадров 33 к/с, что позволяет комфортно играть даже во время нашествия зомби. Это делает систему на основе Llano действительно конкурентоспособной, если выбирать графически менее требовательные игры в стандартном разрешении дисплея диагональю Игра COD: Black Ops тоже демонстрирует приемлемые результаты в разрешении 1280 x 720 без AA, хотя с большим числом пикселей процессор справиться уже не в состоянии.

Более тонкая разница между чипами конкурирующих компаний прослеживается в качестве изображения при оценке производительности 3D. Графический процессор Intel i3-2100 в играх не справлялся с некоторыми мягкими тенями, которые можно увидеть в системе AMD, несмотря на то, что все настройки игры являются одинаковыми. Потеря этих теней сразу бросается в глаза, поскольку они добавляют глубину и реализм игровому окружению.

Скорость DRAM

Технические характеристики процессора AMD A8-3850 оценивались с использованием памяти DDR3 с рабочей частотой 1333 МГц. Благодаря этому сопоставление результатов становится справедливым. Тем не менее, интересно проверить, насколько увеличится производительность А8-3850 от использования более быстрой оперативной памяти. Тем более, что графический процессор разделяет ОЗУ вместе с центральным. Использование более быстрого запоминающего устройства должно быть сопоставимо с его разгоном в дискретной видеокарте.

Это и было подтверждено на практике. По отзывам пользователей, увеличение частоты DDR3 до 1,6 ГГц значительно улучшило производительность 3D. Минимальный фреймрейт при этом возрос на 6 к/с при разрешении 1680 x 1050 точек в L4D 2 и на 3 к/с в Black Ops, что немного повысило ее качество. Интересно, что увеличение частоты ОЗУ до 1600 МГц сказалось больше, чем скудный разгон процессора.

Заключение

Невозможно устоять от положительной характеристики AMD A8-3850, так как с его появлением наконец стала доступной полностью интегрированная графика, способная обеспечивать разумную производительность. APU доказал свою состоятельность в игровых тестах при низких и средних разрешениях, даже если все остальные настройки установлены на максимум. Это делает процессоры AMD серии A желанным приобретением для тех, кому нужен маломощный медиацентр или бюджетная игровая станция для сопряжения с монитором небольшого размера. Интересным решением является и ассиметричный CrossFire, который позволяет добиться более высокой производительности на недорогом гибридном процессоре с дискретной видеокартой базового уровня, хотя ограничение только играми DX10/11 является значительным сдерживающим фактором. Похоже, что A8-3850 сделал большую часть базового сегмента рынка графических процессоров избыточной. И это результат, который пользователей порадовал больше всего.

К сожалению, не все обстоит так радужно. Как показывает низкая A8-3850 в мультимедийных тестах, модель во многом отстает от аналогичного по цене чипа Intel і3-2100. Очевидно, это составит проблему при редактировании изображений или кодировании видео. Тем не менее, по мнению пользователей, компромисс между улучшенными графическими характеристиками в обмен на умеренно худшую медиа-производительность в большинстве случаев оправдан, особенно если такие системы получат распространение в будущем.

Покупатели, которым нужен недорогой ПК, просто офисный компьютер или домашний кинотеатр, способный при необходимости ненадолго становиться игровой станцией, в A8-3850 найдут идеальный вариант, поскольку процессор обойдется значительно дешевле, чем система на базе i3-2100 с дискретным GPU. Чипсет компании AMD обладает более чем достаточной мощностью для обеспечения высокого быстродействия и имеет преимущества дискретного графического процессора, которых достаточно для поддержки необходимой производительности 3D.

Тестовая конфигурация

Для того, чтобы оценить производительность гибридного процессора Llano, мы воспользовались следующим набором комплектующих:

  • процессор: AMD A8-3850 (2900 МГц, 4 ядра);
  • материнская плата: ASUS F1A75-V PRO (AMD A75, UEFI 0902);
  • кулер: Zalman CNPS10X Flex (два вентилятора 120 мм, 1800 об/мин);
  • память: Silicon Power SP004GBLYU160S2B (2x2GB, DDR3-1600, CL9-9-9-24);
  • видеокарта: Radeon HD 6970 1 GB (880/5500 МГц);
  • жесткий диск: Samsung HD502HJ (500 ГБ, 7200 об/мин, 16 МБ);
  • блок питания: Seasonic X-650 (650 Вт).
Оперативная память работала на частоте 1333 МГц с таймингами 9-9-9-24-1Т, все доступные опции увеличения быстродействия, а также технологии энергосбережения, были активированы. Конкуренцию APU AMD A8-3850 составили два процессора Intel — Core i3-2100 и Core i3-540, которые сошлись в неравном бою в одном из предыдущих обзоров . Конфигурации тестовых стендов для платформ LGA1155 и LGA1156 ничуть не претерпела изменений, но мы напомним их. Итак, стенд для тестирования младшего Intel Sandy Bridge включал:
  • процессор: Intel Core i3-2100 (3100 МГц, 2 ядра, Hyper-Threading);
  • материнская плата: MSI Z68A-GD65 (B3) (Intel Z68 Express, UEFI 22.3).
Для измерения производительности двухъядерного процессора LGA1156 использовались такие комплектующие:
  • процессор: Intel Core i3-540 (3066 МГц, 2 ядра, Hyper-Threading);
  • материнская плата: ASUS P7H55D-M EVO (Intel H55 Express, BIOS 1604).
Ввиду отсутствия в нашей тестовой лаборатории процессора AMD Athlon II X4, быстродействие APU AMD A8-3850 пришлось сравнивать с более производительным Phenom II X4 955 BE. Тестовый стенд для платформы Socket AM3 выглядел следующим образом:
  • процессор: AMD Phenom II X4 955 BE (3200 МГц, 4 ядра);
  • материнская плата: MSI 990FXA-GD80 (AMD 990FX, UEFI 11.1).
Все участники обзора работали на штатных частотах, а AMD A8-3850 дополнительно был протестирован в разгоне до 3570 МГц, при частоте оперативной памяти 1970 МГц. Возможно, это не слишком корректно по отношению к конкурентам, но мы еще раз напомним, что Intel Core i3-2100 совершенно бесполезен в плане разгона, а эффективность и прирост производительности двух других участников тестирования хорошо изучен.

В качестве операционной системы использовалась Microsoft Windows 7 Enterprise 64 bit (90-дневная ознакомительная версия). Файл подкачки и UAC были отключены, более никаких модернизаций не проводилось. Из драйверов были установлены пакеты AMD Catalyst 11.6 от 14.06.2011 и Intel INF Update Utility 9.2.0.1030 от 21.04.2011. Тестовые программы были следующие:

  • AIDA64 1.80 (Cache & Memory benchmark);
  • SuperPI XS 1.5;
  • wPrime Benchmark 2.04;
  • Futuremark PCMark 7;
  • 7-Zip 9.20 x64 (встроенный тест);
  • WinRAR 4.0 (встроенный тест);
  • Cinebench 11.5R (64bit);
  • dbpoweramp R14.1 benchmark;
  • x264 HD Benchmark v3.0;
  • Futuremark 3DMark Vantage 1.1.0;
  • BattleForge;
  • Tom Clancy"s H.A.W.X. 2 benchmark;
  • Lost Planet 2 benchmark.
Результаты тестирования

Синтетика

Наше исследование производительности открывает традиционный блок синтетических приложений, которые позволяют измерить пропускную способности и латентность ОЗУ, а также оценить быстродействие в арифметических задачах и многоядреную эффективность.




Результаты тестирования в Cache & Memory benchmark информационно-диагностического пакета AIDA64 1.80 ясно дают понять, что чуда так и не произошло, и встроенный в APU AMD A-Series контроллер памяти значительно отстает от Intel Sandy Bridge. Если сравнивать новичка с AMD Phenom II X4 955 BE, то наблюдается небольшой прогресс в операциях копирования в ОЗУ. Даже в разгоне AMD A8-3850 не может приблизиться к результатам двухъядерного Intel Sandy Bridge, работающего на штатной частоте. Увы, инженеры AMD так и не смогли превзойти своих коллег из компании Intel в части эффективности работы APU с подсистемой ОЗУ.


Совсем печально выглядят результаты новичка при расчете числа Пи с точностью до одного миллиона знаков после запятой. Сказывается наименьшая среди участников тестирования частота, но даже после разгона до 3560 МГц гибридный процессор с трудом обгоняет четырехъядерный Phenom II, а вот оба процессора Intel остаются непобежденными.



Совершенно иначе обстоят дела в wPrime Benchmark 2.04, где физические ядра работают гораздо эффективнее виртуальных. В номинальном режиме AMD A8-3850 закономерно обгоняет оба процессора Core i3, но отстает от Phenom II X4 955 BE, который имеет преимущество по частоте. Разгон выводит APU на первое место, впрочем, кто бы сомневался?





В общем зачете APU AMD A8-3850, работающий на штатной частоте, умудрился уступить даже Intel Core i3-540. При этом, новичок добился паритета с двухъядреным Clarkdale в сценариях Entertainment и Productivity, но немного отстал в Creativity, что и повлияло на итоговую оценку. Самое интересное, что даже разгон и форсирование пропускной способности ОЗУ не позволили гибридному процессору обогнать скромный Phenom II X4 955 BE. Очевидно, сказывается отсутствие кэш-памяти третьего уровня. В любом случае, производительность APU AMD A8-3850 в типичных домашних задачах находится на достаточном уровне, и не следует говорить о провальных результатах. Просто соперники оказались немного быстрее…

Прикладное ПО

Нельзя сказать, что результаты синтетических тестов нас сильно расстроили, все-таки больший интерес вызывают уровень производительности в прикладном программном обеспечении, таком как архиваторы, редакторы построения трехмерных изображений и программы обработки мультимедиа.



Свободно распространяемый архиватор 7-Zip 9.20 x64 имеет алгоритм, отлично оптимизированный для многопоточного выполнения. Именно поэтому двухъядерные процессоры Intel Core i3 безнадежно отстают от AMD A8-3850. Последний, в свою очередь, закономерно проигрывает Phenom II X4 955 BE, но разгон позволяет APU завоевать первое место.


Абсолютно иной характер демонстрирует WinRAR 4.0, который неожиданно поместил на последнее место… Intel Core i3-2100. На штатной частоте быстрее других оказался четырехъядерный Phenom II, который сдался гибридному процессору Llano только после разгона последнего.




Тестирование в Cinebench R11.5 ничего принципиально нового не принесло. Эффективность работы одиночных ядер обеих процессоров AMD оставляет желать лучшего, зато этих ядер у них по четыре, и в многопоточном подтесте процессорам Intel с их технологией Hyper Threading нечего противопоставить. А вот в тесте визуализации в режиме OpenGL AMD A8-3850 разделил с Intel Core i3-540 последнее место. В общем, для работы в CINEMA 4D гибридные процессоры Llano станут не лучшим выбором. Посмотрим, как обстоят дела с кодированием аудио- и видеоконента.




А здесь дела обстоят очень даже неплохо! Оба приложения имеют отличную многопоточную оптимизацию, что позволяет AMD A8-3850 заметно опередить оба процессора Intel, ну а разгон только усиливает преимущество. Маленькой победой выглядит ничья APU и Phenom II X4 955 BE в тесте dbpoweramp R14.1. Возможно, это первый и единственный раз, где можно наблюдать эффект от тех самых улучшений дизайна ядра, дающие некоторый прирост производительности.

Игровое ПО

Тестирование производительности в полусинтетическом пакете Futuremark 3DMark Vantage это, конечно, не совсем «игровое ПО», а скорее — дань традиции, эдакая своеобразная «табель о рангах». Для минимизации влияния видеокарты был использован профиль Performance.



Согласно результатам 3DMark Vantage, AMD A8-3850 на штатной частоте способен создать конкуренцию лишь для Intel Core i3-540, в то время как AMD Phenom II X4 955 BE и Intel Core i3-2100 с переменным успехом борются за первое место. Конечно, после разгона почти на 700 МГц гибридный процессор все-таки возвращает себе победу, но даже после этого становится ясно, что новейшие APU A-Series для бенчмаркинга не слишком подходят.

Что касается реальных игровых приложений, то тестирование в трех современных играх, использующих DX11, показало, что производительность Llano в паре с мощных дискретным видеоакселератором практически не имеет запаса.




В стратегии реального времени BattleForge AMD A8-3850 продемонстрировал поведение, характерное для процессоров Athlon II X4, и оказался даже медленнее совсем «неигрового» Intel Core i3-540. В авиасимуляторе Tom Clancy"s H.A.W.X. 2 гибридный процессор занял предпоследнее место. Разгон, конечно, несколько улучшает слабые результаты APU, но не стоит забывать, соперники работают на штатных частотах. Что касается тестирования в шутере от третьего лица Lost Planet 2, то все участники показывают сопоставимые результаты, так что в насыщенных графикой играх AMD A8-3850 не должен стать сдерживающим фактором.

Выводы

Прежде чем делать выводы, мы просуммируем положительные качества, а также попробуем оценить слабые стороны платформы AMD Lynx в целом. К несомненным преимуществам новой платформы можно отнести:

  • высочайшая, как для интегрированного решения, производительность графической подсистемы;
  • полная поддержка DX11;
  • врожденная поддержка USB 3.0, SATA 6 Гбит/с;
  • перспектива использования графических ядер гибридных процессоров для параллельных вычислений;
  • возможность объединения ресурсов интегрированной и дискретной видеокарт;
  • энергоэффективность, умеренное тепловыделение.
Не обошлось и без некоторых недостатков:
  • слабые возможности для разгона, невысокий частотный потенциал;
  • уникальный процессорный разъем делает невозможным апгрейд систем Socket AM2(+)/Socket AM3;
  • производительность вычислительных ядер ниже, чем у конкурирующих решений.
Как видите, преимущества и недостатки полностью определяются архитектурой и конструктивными особенностями, заложенными инженерами AMD при проектировании APU A-Series. Просто нужно пользоваться всеми выгодами, которые предлагают гибридные процессоры Llano и не обращать внимания на их особенности! Например, можно ли считать уникальный процессорный разъем серьезным недостатком? Конечно, для перехода на APU A-Series придется полностью сменить платформу, зато пользователь «на всякий случай» получает в свое распоряжение мощное и функциональное ядро. Слабые возможности разгона? Вообще, разгон для системы, «во главе угла» которой стоит экономичность и энергоэффективность — весьма сомнительное занятие. Для бенчеров и прочих энтузиастов компания AMD продолжает развивать платформу Socket AM3+ и, мы надеемся, что будущие процессоры AMD Bulldozer не разочаруют поклонников компании. К слову, у процессоров Intel Sandy Bridge с заблокированным коэффициентом умножения дела с разгоном обстоят еще хуже… А что касается производительности, то её вполне хватает для большинства задач, которые могут возникнуть в процессе эксплуатации персонального компьютера. Конечно, есть процессоры, обладающие гораздо большим быстродействием, но они же лишены и главного козыря APU — мощного интегрированного видеоядра.

Подытожив все это можно с уверенностью очертить область применения для новых гибридных процессоров Llano. Мы видим APU A-Series в качестве основы для универсального домашнего ПК, владелец которого проводит мало времени за требовательными к графической подсистеме играми, не планирует приобретение мощного дискретного видеоадаптера, но в то же время не прочь иногда ознакомиться с игровыми шедеврами. Кроме того, наш «герой» редко выполняет ресурсоемкие задачи наподобие 3D-визуализации или сложных научных расчетов, зато часто конвертирует аудио- и видеофайлы для проигрывания на своем медиаплеере, а также обрабатывает множество снимков, сделанных любимой цифровой камерой. При этом, такой гипотетический пользователь ценит компактность и тишину системного блока. А еще он не желает тратить значительные суммы денег на ежемесячный апгредй системного блока. Никого не узнаете?

Оборудование для тестирования было предоставлено следующими компаниями:

AMD A8-3870K | Сами Макинен разгоняет Llano

Пришло время снова обратить свой взор на флагманский APU Llano c разблокированным множителем. A8-3870K сейчас стоит $120, память со скоростью DDR3-2000+ МГц стала дешевле чем когда либо, а улучшения в последнем наборе драйверов Catalyst заметно увеличивают производительность. Похоже, для успеха этого процессора созданы все условия. К тому же, настольные версии APU Trinity появятся в продаже только ближе к зиме.

Мы уже разгоняли Llano раньше, но теперь мы хотим выжать максимум из контроллера памяти, ведь на этот компонент графическая подсистема APU делает не малый упор. Нам любопытно, сможем ли мы вытянуть достаточно производительности из A8-3870K , чтобы действительно посоревноваться с дискретными видеокартами начального уровня? Сможет ли интегрированное решение выстоять против Radeon HD 6670 DDR3 , которую мы сейчас считаем базовой игровой видеокартой?

Чтобы получить желаемый результат мы связались с Сами Макиненом (Sami Makinen), это всемирно известный оверклокер, поставивший несколько мировых рекордов в этой области. Мы спросили, как выжать максимум из Llano.

сайт: Привет Сами, рады тебя видеть. Давай сразу перейдём к делу. Для начала, не мог бы ты порекомендовать нашим читателям лучшую материнскую плату для разгона A8-3870K ?

Сами Макинен: Привет, я тоже рад вас видеть. Ключевыми компонентами материнской платы являются система обеспечения питания и подсистема памяти. У меня отлично получилось с моделью Asus F1A75-M Pro. Насколько я помню, у этой платы усилено питание северного моста и GPU по сравнению с конкурентами. А высокая тактовая частота GPU – это ключ к высокой игровой производительности.

сайт: Мы знакомы с твоим отчётом по разгону APU, и, похоже, разгон памяти также находится у тебя в приоритете.

Сами Макинен: На этой платформе оверклокеры могут очень сильно разгонять память. Если я не ошибаюсь, мировой рекорд разгона памяти может принадлежать как раз Llano. Это определённо сказывается на производительности, особенно при разгоне GPU.

сайт: Какой порядок нужно соблюдать, разгоняя Llano? Ты начинал с памяти, GPU или CPU?

Сами Макинен: Разгонять память довольно сложно, и чтобы получить желаемые результаты и добиться стабильности нужно много времени. Поэтому разгон Llano я обычно начинаю с GPU, оставляя остальные компоненты архитектуры на заводских настройках. Частота GPU базируется на референсной частоте, поэтому меню BIOS даёт вам различные делители, которые переводятся в доступные значения тактовой частоты. Я начал с GPU и нашёл его предел, сначала используя родное напряжение, и затем увеличивал его понемногу.

сайт: Какое напряжение можно считать идеальным при разгоне графического ядра чипа A8-3870K ?

Сами Макинен: Если вы используете воздушное охлаждение, то лучше всего подойдут 1,2-1,3 В как для северного моста, так и для GPU. Просто начните с заводского напряжения 1,1 В и увеличивайте его шагом в 5 мВ. Таким образом вы дойдёте до значения, при котором теряется стабильность и дальше будет только хуже. Вы, конечно, можете поэкспериментировать и с более высоким напряжением, но если превысить 1,4 В, это может плохо сказаться на долговечности APU, особенно при использовании с заводским кулером.

сайт: Что разгонять после GPU?

Сами Макинен: CPU быстро разгоняется, да и узнать пределы этой подсистемы тоже будет не лишним, поэтому вторым я разгоняю процессор. Исходная частота ядер A8-3870K составляет 3,0 ГГц, но это значение можно повысить до 3,5 – 4,0 ГГц, это можно быстро и легко проверить. После того как вы узнали предел своего чипа, верните ему заводские параметры (или более низкие) для дальнейшей настройки памяти.

Разгон памяти – это уже совсем другой этап, который зависит от модулей, которые вы используете. Это могут быть двух и односторонние планки по 2 или 4 Гбайт.

Кроме памяти следует обратить внимание на базовую (референсную) частоту. Чтобы превысить DDR3-1866, её придется увеличивать. Однако стоит опасаться нескольких вещей. Частоты различных компонентов Llano очень тесно связаны. Если вы увеличиваете референсную частоту, вы, по сути, разгоняете всё. К сожалению, это касается PCI Express, Serial ATA и USB, что усложняет процесс. Если использовать жёсткий диск в режиме AHCI ли RAID, предел наступает очень быстро, и обычно он находится между 105 и 110 МГц. Но если использовать старый добрый режим IDE, то частоту можно повысить до 133 МГц. Это основной способ расширить лимит по базовой частоте, что необходимо для максимального ускорения работы памяти. Конечно, само собой разумеется, что нужно использовать высококлассную память, пропускная способность которой может превысить DDR3-2000.

Ко всему прочему, не следует забывать про выходы на дисплей, когда вы работаете с референсной частотой. VGA тоже связан с базовой частотой. Поэтому увеличивая референсную частоту можно его "потерять". Я определённо рекомендую использовать DVI или HDMI. К счастью, большинство пользователей так и делают.

Если подытожить, то необходимо использовать режим IDE и выход HDMI либо DVI. Получить 133 МГц будет не трудно, можно и больше, в зависимости от того, сколько сможет выдержать ваше "железо".

сайт: Ты упоминал, что настраивать память сложнее. Что бы ты порекомендовал для того, чтобы от оперативной памяти можно было получить максимум?

Сами Макинен: С точки зрения производительности однозначно нужно использовать двухсторонние модули DIMM. Односторонние модули немного упрощают работу контроллеру памяти, но в жертву приносится производительность, поскольку интерливинг становится менее эффективен. Лично я использую двухсторонние модули по 2 Гбайт, всего 4 Гбайт. С такой конфигурацией контроллеру памяти проще справиться, и для современных приложений этого объёма достаточно.

Чтобы настроить память, оставьте большую часть параметров в Auto в меню BIOS и настройте ключевые параметры, основываясь на характеристиках DIMM. Возможно, вам удастся хорошо настроить некоторые тайминги и получить ещё 50 МГц или около того. Что касается напряжения, современные модули памяти хорошо работаю при 1,5, 1,6 или 1,65 В.

Теперь, когда вы знаете на что способны GPU, CPU, память и каков лимит референсной частоты, пришло время подобрать идеальную комбинацию. Наша цель улучшить производительность в играх, поэтому основной фокус на GPU и частоте памяти. Если возможно, оставьте родную частоту CPU или опустите её ещё ниже, понизив напряжение. В целом, нужно попытаться сбалансировать нагрузку на материнскую плату. Если немного понизить энергопотребление на CPU, можно больше увеличить напряжение GPU.

Благодарим Сами за ценные советы по разгону чипа Llano. Теперь посмотрим, что у нас получится на практике.

AMD A8-3870K | Подбираем правильные компоненты для разгона

Поскольку мы собираемся разгонять A8-3870K за $120, нет смысла тратиться на высокоэффективное водяное охлаждение и дорогущую память. Это, кстати, может понравиться экономным оверклокерам. И так, мы выбрали следующие ключевые компоненты:

Компоненты тестовой системы с A8-3870K
Материснкая плата Asus F1A75-V Pro Socket FM1, AMD A75 FCH $120
Процессор AMD A8-3870K 3,0 ГГц, четыре ядра $120
Память Corsair Vengeance 4 Гбайт (2 x 2 Гбайт) DDR3-2000 $55
Кулер Cooler Master Hyper TX3 $20

Отметим, что мы придерживаемся разумного бюджета. Cooler Master Hyper TX3 – это эффективный и недорогой кулер, он значительно лучше чем тот, который AMD поставляет в комплекте с A8-3870K . Модули Corsair Vengeance рассчитаны для работы на скорости DDR3-2000, и согласно hwbot.org среди оверклокеров у них хорошая репутация, а их цена составляет всего $55. И, наконец, системная плата Asus F1A75-V Pro по многочисленным отзывам отлично подходит для разгона Llano.

Остальные компоненты не столь критичны. Мы используем качественный блок питания мощностью 500 Вт и корпус с надлежащим воздушным потоком.

AMD A8-3870K | Разгон

Сами утверждает, что лучше начинать разгон с GPU, затем переходить к CPU, референсной частоте и, наконец, памяти.

Но прежде чем что-то менять, давайте посмотрим на BIOS материнской платы, чтобы удостовериться, что поддерживаемые настройки выставлены как нам нужно. Вот какие установки по напряжению были нами использованы в BIOS платы Asus F1A75-V:

Теперь можно приступить к разгону GPU. Вручную выставив напряжение северного моста на 1,3 В, нам удалось повысить частоту графического движка до стабильных 960 МГц. Это неплохой результат, учитывая, что родная частота графического процессора составляет 600 МГц.

Затем переходим к CPU. Несмотря на то, что нам удалось загрузить Windows на частоте 3,8 ГГц, наибольшей стабильной частотой, при которой чип выдерживает тест Prime95, оказалась 3,6 ГГц при 1,5 В. Ускорение, конечно, не самое высокое, но, по сравнению с родной частотой 3,0 ГГц, вполне ощутимое.

После того как мы установили пределы CPU и GPU, пришло время узнать, насколько мы сможем поднять базовую частоту. Мы переключили контроллер SATA в режим IDE, использовали цифровой выход DVI, в итоге базовые 100 МГц удалось повысить до 132 МГц.

Теперь осталось настроить память. Мы постарались ограничить влияние референсной частоты, которая затрагивает GPU, CPU и память. Поэтому, чтобы достичь максимальной базовой частоты, необходимо понизить все три множителя и тайминги памяти в BIOS. Asus F1A75-V Pro достаточно точно отображает частоты памяти и CPU, отталкиваясь от базовой частоты. Тем не менее, плата показывает частоту GPU предполагая, что базовая частота составляет 100 МГц. На всякий случай мы оставили GPU на родных 600 МГц.

Наконец мы подошли к разгону памяти. Здесь завышенная референсная частота становится полезной. Официально, Llano поддерживает максимальную частоту памяти 933 МГц (DDR3-1866), это значит, что если вы хотите чтобы память работала ещё быстрее, необходимо увеличить референсную частоту. Узнайте пределы ваших модулей памяти и выставьте соответствующие тайминги в BIOS, в этом вам поможет CPU-Z:

Максимальный стабильный разгон памяти у нас составил 1092 МГц (DDR3-2184) при 1,6 В. Мы получили его при референсной частоте 117 МГц и таймингах 10-10-10-27 2T.

После того как мы выставили референсную частоту и память, мы подстроили частоту CPU и GPU до пределов, которые выявили ранее. Используя множитель CPU 15,5x, и базовую частоту 117 МГц, мы получили 3627 МГц. Скорость GPU в меню BIOS отображалась неверно, поскольку BIOS платы Asus не брал в расчёт изменения референсной частоты. Тем не менее, эксперимент показал, что значение 800 МГц соответствует 936 МГц реальной частоты графического ядра.




GPU-Z точно определил частоту GPU. Но память он высчитывает только на основании множителя, и мы видим цифру 933 МГц вместо реальных 1092 МГц. В итоге мы имеем следующие показатели: CPU - 3627 МГц, GPU - 936 МГц и память - 1092 МГц (DDR3-2184), всё это при базовой частоте шины 117 МГц.

Прежде чем перейти к тестам необходимо отметить значимость нашего кулера в противовес коробочному. Радиатор и вентилятор, который поставляется вместе с A8-3870K , вполне подойдут, когда чип работает на родной частоте. Тем не менее, их мощности просто недостаточно для того, чтобы справиться с повышенным тепловыделением разблокированного APU, работающего при более высоком напряжении и частоте.

При использовании коробочного кулера AMD, температура быстро поднялась до 70 градусов по Цельсию, на этой отметке APU включает троттлинг. Cooler Master Hyper TX3 с этой температурой справляется гораздо лучше и предотвращает включение вышеупомянутой функции защиты.

AMD A8-3870K | Конфигурация и тесты

Чтобы лучше продемонстрировать различные конфигурации, мы сначала протестировали систему на родных частотах, используя память на частоте 800 МГц с таймингами 8-8-8-24-2T. Такие же настройки мы использовали в февральской статье о разгоне Llano. Затем мы разогнали набор Corsair Vengeance до 933 МГц (самая высокая официальная частота для этой архитектуры) используя тайминги 9-9-9-24-29-1T, но оставили родные частоты CPU и GPU.

Также мы осуществили стандартный разгон используя те же 933 МГц для памяти, изменив только множители CPU и GPU, но не затрагивая базовую частоту. В итоге мы получили 3,6 ГГц на вычислительных ядрах и 960 МГц на GPU.

И, наконец, максимальный разгон: повысив референсную частоту до 117 МГц, CPU до 3627 МГц, GPU до 936 МГц и память до 1092 МГц (DDR3 2184) при таймингах 10-10-10-27-35-2T.

Основной интерес для нас – сравнить графические возможности разогнанного APU с дискретной Radeon HD 6670 DDR3 . Поэтому мы установили эту видеокарту в разогнанную систему и отключили встроенный GPU.

Тестовая конфигурация
CPU AMD A8-3870K (Llano), родная частота 3,0 ГГц, разгон до 3,627 ГГц @ 1,5 В
Материнская плата Asus F1A75-V Pro, Socket FM1, чипсет: AMD A75
Встроенная графика Встроенная Radeon HD 6550D, родная частота 600 МГц, разгон до 960 МГц @ 1,3 В
Дискретная графика Radeon HD 6670 DDR3 800 МГц GPU, 900 МГц (1800 МТ/с DDR3) память
Сеть встроенный контроллер Gigabit LAN
Память Corsair Vengeance CMZ4GX3M2A2000C10 2 x 2 Гбайт, максимальная скорость: DDR3-2000, CL 10-10-10-27-2T, макс. разгон: DDR3-2184 @ CL 10-10-10-27-2T
Накопитель Western Digital Caviar Black 750 Гбайт, 7200 об/мин, кэш 32 Мбайт, SATA 3 Гбит/с
Питание ePower EP-1200E10-T2 1200 W, ATX12V, EPS12V
ПО и драйверы
Операционная система Microsoft Windows 7 Ultimate x64
DirectX DirectX 11
Графический драйвер Catalyst 12.7 Beta
Конфигурация тестов
Battlefield 3 версия 1.0.0.0, Operation Swordbreaker, Fraps
Elder Scrolls V: Skyrim версия 1.4.21.04, Fraps
DiRT 3 версия 1.2.0.0, встроенный бенчмарк
StarCraft II версия: 1.4.2.20141, бенчмарк THG
3DMark 11 версия: 1.0.1.0
SiSoftware Sandra 2011 версия 2011.1.17.15, CPU Test = CPU Arithmetic/MultiMedia, Memory Test = Bandwidth Benchmark

AMD A8-3870K | Результаты тестов

Cинтетические тесты

В 3DMark 11 влияние разогнанного GPU очевидно, и в этом синтетическом тесте A8-3870K обходит дискретную видеокарту на установках Entry и Performance. Но система с дискретной картой немного выигрывает на установке Extreme, хотя 1920x1080, вероятно, высоковатое разрешение для большинства современных игр.

Несмотря на то, что наш разгон, в первую очередь нацелен на увеличение скорости работы в графических приложениях, диагностическая утилита SiSoftware Sandra демонстрирует, как различная пропускная способность памяти и разгон ядра x86 влияют на производительность.

Производительность меняется в зависимости от разгона четырёх ядер. Нам кажется, что тест Multimedia даст похожие результаты.

Как мы и думали, результаты похожи. Теперь давайте посмотрим на тесты памяти.

Пропускная способность памяти масштабируется вполне предсказуемо. Далее мы увидим, как это отразится в играх.

The Elder Scrolls V: Skyrim

Сразу после релиза игра Skyrim плохо работала на процессорах начального уровня, однако разработчики решили проблему, выпустив несколько патчей.

Результаты тестов демонстрируют преимущество более высокой пропускной способности памяти, но свой вклад вносит и ускорение от разгона ядер x86 и графического движка. Однако разница между памятью 933 и 1073 МГц невелика, хотя более высокая скорость передачи данных ещё сильнее приближает нас к уровню Radeon HD 6670 DDR3 .

Очень приятно видеть, как разогнанный APU в одиночку (чёрная линия) приближается к системе с дискретной Radeon HD 6670 DDR3 (синяя линия).

Battlefield 3

Battlefield 3 сильно зависит от графической подсистемы, можно предположить, что разгон GPU и шины памяти сильнее всего повлияет на результаты в этой игре. К сожалению, игра слишком требовательная для A8-3870K на разрешении 1920x1080, поэтому мы снизили его до 1280x720.

Эта игра сильно полагается на пропускную способность памяти, поэтому мы наблюдаем четкую разницу в результатах между памятью на частоте 800, 933 и 1092 МГц. Дискретная Radeon HD 6670 DDR3 снова обходит разогнанный APU, но не сильно.

На графике показаны результаты в динамике в течение всего бенчмарка. Интересно, что топовый чип Llano смог поддерживать уровень в 30 FPS только будучи разогнанным.

DiRT 3

DiRT 3 выступает со стороны гоночных симуляторов. A8-3870K смог справиться с игрой на разрешении 1920x1080 с 2x MSAA на низком уровне детализации.

DiRT 3 это ещё одна игра, которая имеет прямую зависимость от пропускной способности памяти. К сожалению, разогнанный A8-3870K так и не смог догнать систему с дискретной видеокартой Radeon HD 6670 DDR3 .

Единственное различие между этим тестом и предыдущим в том, что здесь добавлено сглаживание (как известно, оно влияет на пропускную способность). Видно, что архитектура APU с общей памятью не так хорошо приспособлена для игр, сильно зависящих от пропускной способности, как дискретная карта.

На этом графике разрыв между дискретной графикой и APU виден ещё отчётливее.

StarCraft II

Бенчмарк StarCraft II сильно нагружает CPU, так что давайте посмотрим, как A8-3870K справится с игрой на настройках качества Medium и разрешении 1920x1080.

Результаты A8-3870K меняются очень заметно, очевидно, что на производительность влияют все разогнанные компоненты. APU в одиночку снова почти достиг уровня производительности Radeon HD 6670 DDR3 .

На графике видно, что между памятью на 800 и 933 МГц практически нет разницы до конца теста, когда количество юнитов, контролируемых компьютером, уменьшается.

Энергопотребление и температура

Понятно, что наиболее экономичный результат A8-3870K покажет на заводской частоте. При комбинированной нагрузке на CPU и GPU энергопотребление всей платформы находится в пределах 150 Вт.

Между увеличением референсной частоты и повышением множителей особой разницы в энергопотреблении нет, за исключением комбинированной нагрузки на CPU и GPU, когда энергопотребление доходит до 252 Вт. Для сравнения система с дискретной Radeon HD 6670 DDR3 оказалась более эффективной.

Давайте рассмотрим температуру при использовании кулера Cooler Master Hyper TX3:

Температура существенно возрастает под влиянием разгона. Как мы уже говорили, для удержания температуры ниже отметки 70° С боксовый кулер не подходит. Выше этой отметки APU включает троттлинг.

AMD A8-3870K | Подбираемся к Radeon HD 6670

AMD Radeon HD 6670 DDR3 постоянно получает рекомендации в наших ежемесячных обзорах "Лучшая видеокарта для игр" , потому что за $65 она представляет базу для геймеров с ограниченным бюджетом. Карта может справиться с большинством игр на 1920x1080 при низком уровне детализации, а более требовательные игры сносно идут на 1680x1050 или 1280x720.

Учитывая это, надо признаться, мы удивлены, что разогнанный A8-3870K смог так близко подойти к этой дискретной видеокарте. За дополнительные $75 вы получаете не только видеокарту, но и четырёхъядерный процессор, которые вместе могут обеспечить неплохой уровень производительности, если вы подкрепите их достаточно быстрой памятью. Стоит отметить, что память DDR3 2000+ сейчас стоит как никогда дёшево и волне доступна для бюджетной сборки.

В процессе тестирования мы использовали пять чипов A8-3870K , и результаты получились стабильные. На всех экземплярах мы смогли получить 900 МГц на GPU и 3,5 ГГц на CPU. Наши лучшие образцы показали 960 МГц и 3,7 ГГц для обеих подсистем соответственно. По нашему мнению, от большинства чипов A8-3870K вполне оправдано можно ожидать похожий разгон при условии, если у вас есть достаточно мощный кулер.

Ну а что может предложить конкурент? Intel Pentium G630 за $70 в паре с Radeon HD 6670 DDR3 за $65, более дешёвой оперативной памятью и дешёвой материнской платой обещают чуть более высокую производительность в протестированных сегодня играх. Но в этом нет ничего удивительного, учитывая, что A8-3870K не смогла догнать дискретную видеокарту Radeon в данном обзоре. Pentium также быстрее обрабатывает однопоточные приложения и при этом потребляет меньше электроэнергии. Мы провели несколько тестов на новой разогнанной системе и сравнили результаты с результатами, полученными в феврале. Платформа на базе процессора Pentium и видеокарты AMD Radeon оказалась немного быстрее, чем сильно разогнанная конфигурация на базе Llano.

Стоит упомянуть, что по сравнению с двухъядерным процессором Pentium, четырёхядерный A8-3870K демонстрирует более высокие результаты во многих многопоточных приложениях, особенно при кодировании медиафайлов.

Сейчас A8-3870K привлекательнее, чем когда-либо, в немалой степени это связано с низкими ценами на быструю память. Чип продемонстрировал возможность плавной игры на разрешении 1920x1080 в трех наших играх. Однако Battlefield 3 заставила нас понизиться до 1280x720, хотя и это разрешение вполне приемлемо для большинства мониторов. От данного APU определённо можно получить гораздо больше, когда чип находится в руках опытного оверклокера.

Если разгон, да еще и – процессора, значит, снова начнется: CPU-Z, Prime-95 и Линпак… И это – программы, собственно в «разгоне» никак не участвующие. Но, на самом деле – с AMD оказалось несколько проще. Значительно проще.

Канадской компанией AMD, то есть, самой фирмой, выпускается одна такая программка. Она – абсолютно бесплатна. Из нее – можно разгонять процессор AMD (начиная с AM-2 сокета), на любой «материнской» плате, не зависимо от производителя… Менять все значения, тестировать корректность разгона, смотреть реальные значения частот, тестировать производительность. То есть, одна программка (с одним окном из нескольких вкладок) – заменит собой типичный «набор» утилит. Но всем желающим, никто не запрещает тестировать «стабильность» Prime-ом, равно как и оценивать производительность после разгона Линпаком. Еще раз повторим – программа свободно работает на всех системных платах (с сокетом от АМ2 и выше, и чипсетом AMD от 7xx). Называется она – тоже, просто: AMD OverDrive.

Предупреждение

Любое изменение значений тактовых частот, выходящее за пределы установленных в документации (равно как завышение питающих напряжений) – нарушает лицензионное соглашение и лишает конечной гарантии. После «разгона», любое устройство автоматически теряет гарантию. Все действия вы будете проводить на свой риск.

Теперь – о менее грустном

Программа позволяет «менять» практически все, что можно менять: частоту Гипертарнспорта, шин PCI-e и PCI, даже (внимание!) – тайминги памяти. Ну, и напряжения (и все это – с отслеживанием температуры в постоянном режиме). Многоядерный процессор amd, можно разгонять отдельно по каждому ядру… Словом, имея установленную «AMD OverDrive», в BIOS лезть – как бы и незачем.

Официальные требования

Поддерживаются чипсеты: AMD Hudson-D3, 990X, 990FX, 970, 890GX, 890FX, 890G, 790FX, 790GX, 790X, 785G, 780G, 770.

В списке нет чипсета вашей системной платы? Скорее всего, он действительно не поддерживается (в том числе, касается это 760G, 740G, 780V).

Скачивается программа здесь:

http://download.amd.com/Desktop/aod_setup_4.2.3.exe. На момент написания обзора, версия была 4.2.3 (что и рассмотрено далее).

Подготовительные действия

Куда должен идти человек перед тем, как пойдет в первый класс? Правильно, в подготовительный. Так и здесь:

  1. Драйвер Cool-n-Quiet, если был установлен – оставьте: это AMD Processor Driver for Windows, пусть он останется.
  2. Зайдите в BIOS и выключите принудительно:
  • Cool ‘n’ Quiet (в Disable);
  • C1E (в Disable);
  • Spread Spectrum (в Disable);
  • Smart CPU Fan Control (в Disable).

При выходе из BIOS, обязательно сохраните изменения. Загрузите ОС.

Примечание: другое название для C1E – Enhanced Halt State. Привести подробное руководство здесь – невозможно, т.к. у всех материнские платы – разные (если не знаем, что где – читаем инструкцию-книжечку по настройке данного BIOS).

Собственно, система теперь готова к установке и запуску «Over Drive». Но сначала – еще пара слов.

Можно ли разгонять процессор в данной системе?

Посмотрите на график энергопотребления. Он касается как раз разгона (то есть, потребление – до и после этого действия):

Это – мощность, потребляемая только процессором (в Ваттах). Сразу, появляется пара вопросов: «потянет» ли ваш блок питания? А кулер процессора? У AMD, как правило, все боксовые кулеры рассчитаны на работу в «штатных» режимах (то есть, и без разгона кулер – почти на пределе). Если вы можете ответить утвердительно на оба вопроса – переходите к следующему этапу.

Примечание: 248 Ватт здесь приходится на 12-Вольтовую линию (то есть, ток по ней равен 20,7 Ампер, при этом, не много БП могут «похвастаться» значением выше, чем 20).

Работа с программой Over Drive

Для начала – краткий ликбез.

  • Частота процессора – это частота ядра CPU, на которой процессор выполняет инструкции.
  • Частота HyperTransport-а: частота интерфейса между процессором и северным мостом. Обычно – равняется частоте северного моста (но – не должна ее превышать).
  • Частота северного моста (NB): для процессоров, увеличение частоты северного моста приводит к повышению скорости контроллера памяти (и кэша L3). Данная частота должна быть не ниже, чем частота HyperTransport-а, хотя можно сделать ее и значительно выше.
  • Частота памяти: рабочая частота (в мегагерцах), на которой функционирует память. Нужно помнить, что физическая частота – в 2 раза меньше «эффективной».
  • Наконец, базовая частота: как можно видеть, все частоты – высчитываются из базовой (ее умножением или делением).
  • Тактовая частота CPU = множитель CPU * базовая;
  • Частота северного моста (она же, частота L3 в AMD) = множитель северного моста * базовая;
  • Частота HyperTransport-а = множитель HyperTransport * базовая;
  • Частота памяти = множитель памяти * базовая.

Запускаем программу Over Drive. В первом окне – жмем сразу «ОК»:

Тем самым, пользователь согласился с ответственностью (связанной с нежелательными последствиями «разгона»). Основное окно программы – появится вслед за этим:

Как видим, показаны все частоты, установленные в компьютере на данный момент (частота HyperTransport – в правой колонке, а HT ref. – вроде как, «базовая»).

Зачем так много «множителей»? Не проще ли разогнать компьютер сразу базовой частотой?

Дело в том, что с «базовой», связаны еще две – это частоты шин компьютера, PCI и PCI-Express. При росте же частоты PCI, многие устройства, встроенные в плату, могут работать нестабильно (и это наблюдается уже с добавлением менее, чем 10%, к «штатным» значениям).

Эта программа для разгона процессора amd позволяет отслеживать и температуры (всего, чего только можно). Переходим на вкладочку «Status Monitor» (вторая по счету):

Здесь мы видим температуры только ядер процессора (в последней строке). Выбирая же «Board Status» и «GPU status», аналогичный «экран» получим для материнской платы и видео. Дело в том, что последняя версия – поддерживает разгон видео-ускорителя, встроенного в процессор (а в предыдущих – только в чипсет, и еще Side Port). То есть, контролировать надо и температуру видео… Но мы – разгоняем процессор.

Переходим на вкладку «Performance Control» (третья вверху).

Это и есть – основное окно для разгона. Но сейчас вкладка – в режиме «для новичков». Идем на последнюю («Preference»):

Здесь (закладка «Settings») – вместо «Novice Mode» выбираем, как на рисунке («Advanced Mode»). Если вернуться на предыдущую вкладку, вид ее станет таким:

Ну вот, наконец-то! Можно свободно менять все частоты (то есть, все множители), включая даже «базовую» частоту (обозначена, как «HT ref.»):

Примечание: как видим, множитель северного моста (NB) – отсутствует. Частота же NB, на самом деле, возрастает «автоматически», с изменением частоты HyperTransport (она – не может быть меньше, не так ли?).

Как видим, запас по разгону HyperTransport-а (следовательно, NB, и самое главное – L3 кэша) – весьма небольшой. Базовую же частоту «задирать» на очень большие значения – тоже нельзя (даже при 220МГц, может что-то «зависнуть», в том числе: звуковая, сетевая…). Так что, первым делом, обычно «балуются» с множителем (Core Multiplier) процессора.

Активировать изменения – можно кнопкой «Apply»:

После чего, лучше проверить, не привел ли разгон к нестабильности (закладка «Stability Test»). Ну а, реальную производительность – можно оценивать в «Benchmark»).

Технология разгона процессора

  1. Повышаем множитель процессора (пусть это будет +1 или 2). Было 15 – стало 17. Жмем на «Apply».
  2. Включаем «Stability Test». Если он проходится – бежим на вкладку «Status Monitor» (записываем температуру).

Если вас все устраивает (если процессор прогрелся не выше, чем до 70-75 Градусов), частоту можно повысить еще. То есть, повторяется шаг 1. и 2., но только до появления «нежелательных» значений температуры (либо, «провала» «Stability Test»).

Таким образом, мы разогнали процессор одним только множителем.

Здесь, также – «Stability Test» после каждого изменения. Предел – когда начнет нарушаться работа одного из устройств (интегрированных в системную плату). Смысл же в том, чтобы достичь максимально возможной частоты CPU с заниженным множителем (постепенным повышением «базовой»).

В общем, разгон по «базовой частоте» – требует определенной квалификации.

Ну а в последнюю очередь (третий этап, так сказать) – можно «повысить» и множитель «HT Multiplier». Что повлечет разгон L3-кэша (и еще больший нагрев CPU). Закончив разгон, проведите «Stability Test». Всегда (при смене чего-то, в том числе и отличного от CPU-множителя) – смотрите температуры (не только процессора, но и мат. платы), приводимые на вкладке «Status Monitor».

После «разгона», саму программу можно закрыть. Все установки – останутся (чтобы их «снизить» – запустите программу еще раз). Перезагружать компьютер не нужно (и, даже после перезагрузки – изменения останутся в силе).

Дополнительно

Мы «разогнали» только процессор. Слабым звеном в системе останется память. Ее разогнать – тоже можно, для этого служит закладка «Memory»:

Но это – сложнее, чем разгонять CPU, так как «стабильный» разгон ОЗУ связан с подбором таймингов (задержек при переключении). Конечно, сразу их можно повысить на пару значений, но затем – все равно, лучше тщательно подобрать.

Название горит «красным» – значение вступает в силу лишь после перезагрузки. «Частота памяти» переводится на английский, как «Memory Clock».

Примечание: для памяти класса DDR-3 (и 2), физическая частота (отображаемая программой) – относится с «эффективной», как один к двум.

Может быть, это странно, но напряжение памяти – регулируют там же, где и все остальные (в закладке «Clock/Voltage»). Их значения – повышают, если по-другому – не получается. Да и вообще, разгон изменением напряжений – рекомендуется «в последнюю очередь».

Разогнав систему, не ленитесь запускать «Stability Test». На очень больших значениях множителей (более, чем +20% к «штатным» значениям), температуру смотреть лучше сразу, после нажатия кнопки «Apply» (непрерывно, минут 8-10). При наличии перегрева, сразу меняйте значение на «предыдущее».

Нам нужен грамотный, то есть «стабильный» разгон, и мы не хотим «отключения по перегреву». Не так ли?

Ну а на сколько можно «разогнать» определенный процессор? Во-первых, все «не Black Edition»–процессоры, не позволят вам менять множитель (Core Multiplier). Значит, и разогнать Core (ядро) – можно только чуть-чуть, то есть, «базовой» частотой. И больше – никак, по идее. Зато, именно этот «разгон» повышает производительность системы «в целом», в пропорциональное число раз.

Если пользователь все же решится настраивать память через программу – надо зайти предварительно в BIOS. Чтобы выставить тайминги памяти (только, вручную):

По умолчанию, они всегда «Auto», так что, этот шаг (на подготовительном этапе) – обязателен.

Пояснение: тайминги памяти компьютер берет из SPD самой памяти (при каждой новой загрузке ПК, если значение в BIOS-е – «авто»). В свою очередь, SPD содержит значения, «рекомендованные» производителем. Вместо «авто»-режима, нужно каждое значение тайминга установить в «явном» виде (а каким его сделать – ну хотя бы таким же, как было в SPD).

То есть – берем, заходим, меняем (вместо «Auto», становится «5», затем «5», ну и так далее, согласно отображаемым данным из SPD). SPD переводится как: «последовательный детектор предсказания», в общем, название смысла не отражает (по-русски, это было б скорей «ПЗУ памяти»).

Значений – достаточно много, но поменять их – реально (в приведенном здесь BIOS – всего лишь 9, затем – еще 5). Все должно получиться…

Статистика разгона

Возьмем и рассмотрим сейчас выбранные наугад результаты из «Оверклокеров.ру» (из статистики по разгону наиболее «легкого» в этом смысле семейства – Propus, он же Атлон-II Х4).

Результат первый: 3667 МГц (282 «базовая» * 13,0). Кулер – BOX. Подъем напряжения – все же, использовался (реальное значение Vcore составляло около 1,5 Вольт). Вывод: как видим, базовая частота – неплохо поддается разгону. Кулер – менять не потребовалось. Применялась очень «неслабая» системная плата (ASUS M4A78LT-M), с «неслабой» системой питания. Штатная частота CPU: 200*13,0.

Результат второй: 3510 Мгц (234 * 15.0). Напряжение Vcore = 1.416 (то есть, не сильно завышенное). И это – стабильный разгон (похоже, что «базовую» сильнее повысить – не получилось), но плата также была «не простая» – ASrock 870 Extreme3 (кулер – BOX). Штатный режим: 200*15,5.

Третий результат: 3510 Мгц (260 * 13.5). Иногда «базовая» все-таки поддается разгону (на плате ASUS M4A77T). Напряжение – почти «штатное» (1,5 Вольт), а вот кулер понадобился совершенно «не BOX» (Cooler Master Hyper 212 Plus). Штатный режим: 200*15,0. Температура всех Cores «по-максимальному», и – в режиме полной загрузки процессора, не превышала 50!

В первом примере – температура равна 62 Гр. С, во втором – 50.

Advanced Clock Calibration (ACC)

Как разогнать процессор AMD – мы рассмотрели довольно подробно. Но, есть еще одна функция, знать о которой – необходимо. Функция «сверхточного» подбора частот, который выполняется автоматически (называемая ACC).

ACC присутствует только на платах с южным мостом «от 750» или выше. Саму ACC, можно включать как в программе, так и внутри BIOS (в обоих случаях, перезагрузка – нужна).

Зачем мы здесь говорим об этом? Для 45-нм процессора Phenom II, лучше всего – отключать ACC (ведь AMD заявляет, подобная функция – есть в кристалле процессора). Что верно и для любых CPU с тех. процессом «не старше». А для более «старых» процессоров (Phenom и Athlon 65-нм), ACC надо выставить в положение Auto. От +2% до +4% прироста частот – гарантировано.

Так что, зайдите на нашу «любимую» вкладку (Performance Control), проверьте значение.

Что может влиять на «успешность» разгона?

В самом начале, уже говорилось о том, что при разгоне, процессор – требует больше энергии. У AMD, большинство настольных процессоров «укладывалось» в 95-ваттный пакет. Но это не значит, что мощность (и потребляемая, и выделяемая) – обязана быть на этом пределе.

Кстати, в последнее время, ситуация – не улучшается. Процессоры AMD FX, несмотря на использование техпроцесса 32-нм, остались примерно на этом же уровне (значение TDP – не уменьшилось ниже 95-ти).

Для разгона, важны «три» устройства: система питания CPU (на мат. плате), БП (как уже говорили выше), и кулер процессора.

Этот «набор» – должен быть «сбалансированным», то есть, все комплектующие должны полностью соответствовать требованиям остальных. Пользователь, наверно, догадывается, что нет смысла ставить «крутую» системную плату, если БП – «не тянет» и половину всей мощности. В общем же, 20 Ампер – это «минимум» блока питания, для его линии 12 Вольт (240 Ватт, но бывают и большие требования). Прожорливость же, то есть мощность процессора, с ростом частот – идет нелинейно. В начале обзора, мы показали (сколько «кушает» 965-й). Нагрузка растет и при повышении напряжений питания Vcore.

Всю эту мощность, надо еще «отводить» (выделяется все это – в виде тепла на самом CPU). Для Athlon II – чаще достаточно кулера «BOX», но о более «мощных» процессорах – так не сказать… Тут речь идет о разгоне, конечно.

Все эти требования – очень важны. Однако, разгон – лотерея, финальный его результат будет зависеть от экземпляра процессора. Вся же «обвязка» – только поможет раскрыть потенциал. Не стоит слишком уж верить данным статистики (а также, обзорам), где 45-нм «камни» – превосходят предел в 4,0 Гигагерца. Экземпляры есть разные (гонится Core – но не гонится «кэш»), варианты – различны, а что разгонять (и – нужно ли это) – решает сам пользователь.

О результатах разгона

Мы не будем писать о производительности, о ее росте вместе с «разгоном». Реальная скорость работы – действительно, изменяется, и изменяется в лучшую сторону (но – нелинейно с самой частотой).

Рассмотрим здесь пару случаев. То есть, последствий (при этом – не слишком желательных).

Пользователь «не разгонял» новый процессор. По истечении срока гарантии, это было «исправлено», и почти сразу. Все было правильно выполнено (найдена максимальная частота, и т.п.).

Сам же ПК, в этом режиме работал 2 месяца. Ну а затем – перестал (как бы, сломался). Чем не повод для паники?

Проблема была же – только в разъеме на плате (сильно окислился, в результате чего, 12V на процессор – не поступало). Что остальное – в порядке, выяснилось после замены разъема. Однако, в «штатном» режиме, компьютер и дальше работал бы, ничего не пришлось бы менять (просто разъем, как назло, был 4-пиновый).

Нередким дефектом можно считать и отпайку транзистора платы в цепи питания CPU (силовые транзисторы на «материнке»). Если до разгона – все как бы, работает, затем, сам пользователь – добросовестно «включает» все тесты, вызывающие максимальную «мощность» (а компьютер – берет, и «гаснет», в процессе этих вот тестов)… Простым «монтажем», после такого дефекта – системная плата не восстановится. Следить же за значением температуры – получается, что невозможно (ну, нет таких датчиков на «материнке»). Мощным тестом для «перегрева» считается S&M, в то время как Prime95 –быстрее других находит ошибки.

То есть, в «разгоне» – возможны ошибки. Исходящие от «разгоняющего». Вероятность которых – тем ниже, чем более качественное остальное «железо» (как было рассмотрено: системная плата, БП, и так далее). А качество, так же, и стоит дороже. Может, за эту же сумму – взять более быстрый процессор…

Будет ли смысл разгонять – решает сам пользователь. Что разгонять, и чем проверять – выбор вы делаете самостоятельно.

Приведенной здесь информации – должно быть достаточно для «основного» разгона. Более тонкая настройка «железа» – требует квалификации.