IBM представила новый мейнфрейм z13. Мэйнфрейм умер. Да здравствует мэйнфрейм

Мэйнфрейм (англ. Mainframe ) - данный термин имеет два основных значения:

  • Большая универсальная ЭВМ - высокопроизводительный компьютер со значительным объемом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой емкости и выполнения интенсивных вычислительных работ.
  • Компьютер с архитектурой IBM System/360, 370, 390, zSeries.

История Мэйнфрейма (Mainframe )

Историю мейнфреймов принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затрачувала $ 5 млрд. Сам термин «мэйнфрейм» происходит от названия типовых процессорных стоек этой системы. В 1960-х - начале 1980-х годов System/360 была безоговорочным лидером на рынке. Ее клоны выпускались во многих странах, в том числе - в СССР (серия ЕС ЭВМ).

Мэйнфреймы IBM используются в более чем 25 000 организациях по всему миру (без учета клонов). Около 70% всех важных бизнес-данных хранятся на мэйнфреймах.

В начале 1990-х начался кризис рынка мейнфреймов, пик которого пришелся на 1993 год. Многие аналитики заговорили о полном вымирании мейнфреймов, о переходе от централизованной обработки информации к распределенной (с помощью персональных компьютеров, соединенных двухуровневой архитектурой «клиент-сервер»). Многие стали воспринимать мейнфреймы как вчерашний день вычислительной техники, считая Unix - и PC -серверы более современными и перспективными.

Важной причиной резкого уменьшения интереса к мейнфреймам в 80-х годах было бурное развитие PC и Unix-ориентированных машин, в которых благодаря применению новой технологии создания КМОП -микросхем удалось значительно уменьшить энергопотребление, а их размеры достигли размеров настольных станций. В то же время для установки мейнфреймов требовались огромные площади, а использование устаревших полупроводниковых технологий влекло за собой необходимость водяного охлаждения.Итак, несмотря на их вычислительную мощность, за дороговизны и сложности обслуживания мейнфреймы все меньше пользовались спросом на рынке вычислительных средств.

Еще один аргумент против мейнфреймов состоял в том, что в них не соблюдается основной принцип открытых систем, а именно - совместимость с другими платформами.Виднисшись к критике конструктивно, руководство компании IBM, основного производителя аппаратного и программного обеспечения мейнфреймов, выработало кардинально новую стратегию в отношении этой платформы с целью резко повысить производительность снизить стоимость владения, а также добиться высокой надежности и доступности систем. Достижению этих планов способствовали важные перемены в технологической сфере: на смену биполярной технологии изготовления процессоров для мейнфреймов пришла технология КМОП. Переход на новую элементную базу позволил значительно снизить уровень энергопотребления мейнфреймов и упростить требования к системе электропитания и охлаждения (водяное охлаждение было заменено воздушным). Мэйнфреймы на базе КМОП-микросхем быстро прибавляли в производительности и теряли в габаритах. Самым кардинальным же событием стал переход на 64-разрядную архитектуру zArchitecture. Современные мейнфреймы перестали быть закрытой платформой: они способны поддерживать на одной машине сотни серверов с различными ОС, включая Linux.

Согласно одному из прогнозов Gartner Group, последний мэйнфрейм предполагалось устранить в 1993 году. Срок этого прогноза давно закончился, а рынок мейнфреймов остается стабильным, и их продажи ежегодно растут.

С 1994 года вновь начался рост интереса к мэйнфреймов. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле чем распределенная.

Характеристики Mainframe

  • Среднее время наработки на отказ оценивается в 12-15 лет. Надежность мейнфреймов - это результат почти 60-летнего их совершенствования. Мейнфреймы могут изолировать и исправлять большинство аппаратных и программных ошибок.
  • Дублирования . Резервные процессоры. Запасные микросхемы памяти. Альтернативные пути доступа к периферийным устройствам. Горячая замена всех элементов вплоть до каналов, плат памяти и центральных процессоров. Группа разработки VM / ESA затрачувала уже двадцать лет на удаление ошибок из операционной системы, и была в результате создана система, которую можно использовать в самых ответственных случаях.
  • Целостность данных . В мэйнфреймах используется память, исправляющая ошибки. Ошибки не приводят к разрушению данных в памяти, или данных, ожидающихустройства ввода-вывода. Дисковые подсистемы построены на основе RAID -массивов с горячей заменой и встроенных средств резервного копирования гарантируют от потери данных.
  • мейнфреймов может составлять 80% -95% от их пиковой производительности. Для UNIX-серверов, конечно, рабочая нагрузка не может превышать 20% -30% от пиковой загрузки. Серверы типа Unix или тем более Windows чтобы быть устойчивыми должны выполнять один приложение, то есть под каждый приложение типабазы данных, промежуточного ПО. или интернет-сервера должна быть выделена отдельная машина, тогда как S/390 тянуть все сразу, причем все приложения будут тесно сотрудничать и использовать общие куски ПО.
  • Пропускная способность подсистемы ввода-вывода мэйнфреймов разработана так, чтобы работать в среде с высоким рабочим нагрузкам на ввод-вывод. Ряд тестов показал что мэйнфрейм может обрабатывать на 400-500% более интенсивное ввода-вывода чем SUN E10000 или серверы HEWLETT-PACKARD класса T.
  • Масштабирование может быть как вертикальным так и горизонтальным. Вертикальное масштабирование обеспечивается линейкой процессоров с производительностью от 5 до 200 MIPS и наращиванием до 12 центральных процессоров в одном компьютере. Горизонтальное масштабирование реализуется объединением ЭВМ в ParallelSysplex - многомашинный кластер, выглядит с точки зрения пользователя единым компьютером. Всего в ParallelSysplex можно объединить до 32 машин. Географически распределенный ParallelSysplex называют GeoPlex. В случае использования ОС VM для совместной работы можно объединить любое количество компьютеров.Программное масштабирование - на одном мейнфреймов может быть сконфигурирован фактически безграничное количество различных серверов. Причем все серверы могут быть изолированы друг от друга так будто они выполняются на отдельных выделенных компьютерах и в тоже время совместно использовать аппаратные и программные ресурсы и данные.
  • Доступ к данным . Поскольку данные хранятся на одном сервере, прикладные программы не нуждаются сборе исходной информации из множества источников, не требуется дополнительное дисковое пространство для их временного хранения не возникают сомнения в их актуальности. Требуется небольшое количество необходимых физических серверов и значительно более простое программное обеспечение. Все это, в совокупности, ведет к повышению скорости и эффективности обработки.
  • Использование дискового пространства . Объем базы данных и его отношение к требующейся для размещения объема физического диска, пути доступа к дисковой подсистеме, пропускная способность ввода-вывода, достаточное для загрузки процессора.

Результаты тестирования специально настроенных под эталонные тесты систем, представленные на сайте TPC показывают, что в UNIX дисковое пространство используется на 20% -30%. Для S/390 к. п. д. для дисковых систем находится в диапазоне 65% -75%. Если мы примем размер базы данных 700 GB, типичный для большинства пользователей, мы увидим что для нее потребуется дисковая подсистема в 2.8 ТБ в случае UNIX и 1 ТБ для S/390. На самом деле требуется рассматривать два типа рабочей нагрузки: один организован и оптимизирован для OLTP и эффективной пакетной обработки, и второй - оптимизирован для систем добычи данных и бизнес- приложений. В этом случае требование к емкости дисковой подсистемы составит 5,6 ТБ для UNIX, против 2 ТБ для S/390.

  • Защита . Встроенные в аппаратуру возможности защиты, такие как криптографические устройства и Logical Partition, и средства защиты операционных систем дополнены программными продуктами RACF или VM: SECURE, обеспечивают совершенный защиту.
  • Сохранение инвестиций - использование данных и существующих приложений, не влечет дополнительных расходов по приобретению нового программного обеспечения для другой платформы, переобучению персонала, перенос данных. Пользовательский интерфейс всегда оставался наиболее слабо месту мэйнфреймов. Сейчас же стало возможно для приложений мэйнфреймов, в кратчайшие сроки и при минимальных затратах, обеспечить современный интернет-интерфейс.

Сейчас майнфреймы IBM занимают главное место на мировом рынке. Так же на рынке со своей продукцией присутствуют фирмы Hitachi, Amdahl и Fujitsu.

Мэйнфрейм (Mainframe ) - это вымышленный персонаж, который появляется во вселенной Marvel Comics. Он появился в комиксе под названием A-Next #1 (октябрь 1998 год), а его создателями являются Том ДеФалько и Рон Френц. Мэйнфрейм представляет собой разумную компьютерную программу, которая основана на мозговых волнах Тони Старка, помимо этого, он являющаяся одним из основателей команды А-Некст.

Биография

В альтернативной Вселенной известной как Земля-982, после последней провальной миссии Мстителей, уставший решил уйти из героев и окончательно отставить броню Железного человека. Тем не менее, он осознавал и боялся, что со временем может возникнуть новая угроза для Земли, поэтому, Тони решил подстраховаться на случай возникновения не предвиденных обстоятельств и создать то, чтобы может её предотвратить. Для этих целей, он сконструировал по образу брони Железного человека, андроида, которого назвал Мэйнфрейм. Старк также заложил в андроида отпечаток своих мозговых волн. Однако, когда он закончил работу над Мэйнфреймом, не было активной команды Мстителей, по этой причине, могущественный андроид оставался неактивным.

Спустя целых десять лет после создания андроида, произошла чрезвычайная ситуация, когда взрослый Кевин Мастерсон (сын покойного Эрика Мастерсона, также известный как Громобой, который был одним из Мстителей) прибыл в особняк Мстителей расположенный в Нью-Йорке. Который прибыл туда, чтобы забрать мистическое оружие, которое ему завещал его отец. Извлечение мистического оружия из хранилища привлекает внимание Локи, который желает его заполучить для себя. С этой целью, он направляет Троллей. В это время, в Особняке Мстителей присутствует Эдвин Джарвис, который является его смотрителем. Джарвис становится свидетелем нападения и посылает сигнал Мстителям. Данный сигнал также приводит к активации Мэйнфрейма, впервые за все время после его создания.

На данный сигнал отзываются (в настоящее время лидер команды Икс-Люди), Кассандры Лэнг (дочь Скотта Лэнга, бывшего ) известная под псевдонимом Жало и Хелен Такахама под псевдонимом Джолт. Поскольку Кевин пытаясь скрыться от Тролей бежит по улицам, он также привлекает внимание Спидбола и Джей2. В то время, когда Кевин загнан в угол, его в последнюю секунду спасает Мэйнфрейм. Но несмотря на то, что героям удаётся разобраться со всеми Троллями, все они были быстро пойманы Локи, который забирает всех героев в Асгард. Там он намеревался зарядить оружие "Громобой", после чего использовать его против своего брата , который теперь является правителем Асгарда. Когда Локи производит зарядку Громобоя, Кевин удаётся выбраться и завладеть оружием, а также освободить других героев. Между героями и вновь разгорается сражение, в котором он опять начинает одерживаться верх, однако, данная заварушка привлекает внимание Тора, в результате чего, злодей был вынужден бежать. Тор возвращает героев обратно на Землю, по прибытию Мэйнфрейм предполагает организовать новое воплощение Мстителей. В конечном счёте, Мэйнфрейм, Жало, Джей2 и Кевин (который становится новым Громобоем) объединяются и сформировывают команду получившая название, А-Некст.

После создания команды, Мэйнфрейм сразу же попытался стать её лидером. Он часто сталкивается с противодействием в лице Жало (которая не знала, что Мейнфрейм является андроидом). Но когда Мэйнфрейм был серьёзно поврежден, его тайна раскрывается, однако, Жало была одной из первых, кто хочет ему помочь починить его (с помощью своего отца). Со временем выясняется, что всякий раз, когда Мейнфрейм был серьёзно повреждён, он загружает свою личность и воспоминания в другое тело, собранное на орбитальном спутнике.

Вскоре Мэйнфрейм превратился в нечто большее, чем просто обычный высокотехнологичный героя для своих товарищей по команде, он стал их настоящим другом. Он также научился делиться своими обязанностями в качестве лидера со своей напарницей известной под псевдонимом Американская Мечта. Несмотря на это, его направленность на лидерство по-прежнему приводит его к разногласиям с Мстителями, в частности с Девушкой-Пауком.

Другии версии

Земля-691

Супергерой известный как Вижен (Земля-691) преобразовался в Мэйнфрейма. Он стал главной операционной системой целой планеты, под его контролем находилось буквально всё, начиная с климата заканчивая планетарной стабильности. Мэйнфрейм был хранителем щита Капитана Америки. Кроме этого, он хранил своё оригинальное тело на планете Нептун.

Способности

Мейнфрейм является высокотехнологичным андроидом, который способен мыслить и действовать самостоятельно. Оболочка его тела изготовлена из очень прочного сплава металлов, способный выдерживать удары огромной силы, как энергии так и других видов. Он обладает суперсилой и способен летать на сверхзвуковых скоростях. Мейнфрейм может испускать репульсорные лучи; лазерные, электрические и магнитные вспышки. Помимо этого, на его запястьях находятся выдвижные пулеметы, которые могут стрелять гранатами и ракетами. Он способен поглощать энергию радиоизлучения. Мейнфрейм обладает высоким интеллектом и обширными знаниями в различных областях науки и технологий.

Пожалуй самой главной особенностью Мейнфрейм является его способность переносить своё сознание (программу) из одного роботизированного тела в другое. Как правило, он пользуется данной особенностью, когда его тело было уничтожено или повреждено.

В СМИ

Мультсериалы

Мэйнфрейм появляется в мультсериале "Халк и агенты СМЭШ", персонажа озвучил Джеффри Комбс. Он появляется в качестве главного злодея в эпизоде под названием "Колеса ярости". Эта версия персонажа является продвинутым андроидом, который был создан Тони Старком, в качестве достойного для него противника, против которого он сможет играть в игры. После того как Мэйнфрейму надоедает проигрывать, он начинает подчинять себе различное оружие и оборудование в Старк Индастриз. Когда появляются Халки, Мэйнфрейм предлагает провести гонки на роликах, если они проиграют то он уничтожит город. После того как герои его обыгрывают, он решает отправиться изучить человечество поближе.

Фильмы

Мэйнфрейм (версия Вижена) появляется в фильме "Стражи Галактики. Часть 2", персонажа озвучила Майли Сайрус.


Начало и конец истории мейнфреймов связан с именем IBM, и это не удивительно. В далёкие 1930-е годы, когда "компьютером" фактически был ваш напарник с логарифмической линейкой, который производил за вас все вычисления, компания IBM была в основном известна своими перфорационными машинами. Но во многом благодаря дальновидному руководству, которое в то время было представлено Томасом Уотсоном (Thomas Watson), IBM трансформировалась из одного из многих продавцов офисной техники в компанию, которая позднее стала монополистом по производству компьютеров.

Harvard Mark I

Машина, получившая название Harvard Mark I, стала примером дальновидности Томаса Уотсона, хотя с практической точки зрения она не была технологической отправной точкой последующих открытий. И всё же стоит взглянуть на эту машину, ведь только так мы сможем увидеть, насколько далеко зашёл прогресс.

Всё началось в 1936 году, когда гарвардский математик Говард Айкен (Howard Aiken) пытался решить проблему, связанную с разработкой вакуумных трубок (ламп). Чтобы добиться прогресса, ему нужно было решить систему нелинейных уравнений, а под рукой не было ничего, что могло бы сделать это за него. Айкен предложил гарвардским учёным построить крупномасштабный калькулятор, который мог бы решать подобные задачи. Однако его предложение было встречено без энтузиазма.

Затем Айкен обратился в Monroe Calculating Company, но компания отвергла его предложение. Тогда Айкен пошёл в IBM. Предложение Айкена, по сути, представляло собой список требований, а не настоящий проект, поэтому компании IBM самой нужно было понять, как воплотить эти требования в жизнь. Начальная стоимость проекта была оценена в $15 000, но она быстро взлетела до $100 000 к тому моменту, когда в 1939 году предложение было принято официально. В итоге воплощение данной идеи в жизнь стоило IBM около $200 000.

Только в 1943 году пятитонный механический "монстр" длиной около 15 метров начал выполнять свои первые вычисления. Поскольку компьютеру нужна была механическая синхронизация между разными вычислительными блоками, по всей его длине располагался вал, приводимый в движение мотором мощностью в пять лошадиных сил. Компьютерная "программа" создавалась путём вставки проводков в штекерную панель. Данные считывались с помощью перфокарт, и результаты печатались на перфокартах или выводились с помощью электрических пишущих машин. Даже по тем временам этот "компьютер" работал медленно. Он мог делать только лишь три операции сложения или вычитания в секунду, а на одно умножение у машины уходило целых шесть секунд. Вычисление каждого логарифма и тригонометрические преобразования занимали более одной минуты.

Как уже говорилось выше, машина Harvard Mark I была технологически бесперспективной и не сделала ничего особо важного за все свои 15 лет использования. Тем не менее, она представляла собой первую в истории полностью автоматизированную вычислительную машину. Несмотря на то, что машина Mark I работала очень медленно, была механической, и ей не хватало таких важных операций, как условный переход, это всё же был компьютер, который был лишь маленьким намёком на то, чему ещё предстояло появиться.

ABC (Atanasoff-Berry Computer)


Первым электронным компьютером на самом деле была машина ABC (Atanasoff-Berry Computer), хотя этот факт был признан многими годами позднее. Словосочетание "электронный компьютер" может показаться странным, однако только что на примере Harvard Mark I мы видели, что действительно были компьютеры без электронных компонентов, которые использовали механические переключатели, регулируемые зубчатые колёса, реле и рукоятки. В отличие от таких машин, компьютер ABC все вычисления производил с помощью электроники, поэтому он является очень важным этапом в развитии вычислительной техники.

Несмотря на то, что компьютер ABC был электронным, его компоненты очень сильно отличались от тех, что используются сегодня. На самом деле, здесь потребовались бы транзисторы и интегральные микросхемы, но в 1939 году, когда Джон Атанасов (John Atanasoff) получил финансирование на сборку прототипа, таких компонентов ещё не было, поэтому он использовал то, что было доступно на тот момент: электровакуумные лампы. Электровакуумные лампы могли усиливать сигналы и работать как переключатели, а значит, они могли использоваться для создания логических схем. Впрочем, эти лампы потребляли много энергии, сильно нагревались и были очень ненадёжными. Такими вот недостатками обладали компьютеры, построенные на электровакуумных лампах, но с этим приходилось мириться.

Логические схемы, созданные Атанасовым с помощью электровакуумных ламп, работали быстро и могли выполнять по 30 операций сложения и вычитания в секунду. Сегодня это является нормой, но тогда компьютеры редко использовали двоичную систему счисления, поскольку в то время с ней были знакомы немногие. Ещё одной важной технологией было использование конденсаторов для памяти и "подпитка" их электричеством для сохранения "содержимого" (аналогично регенерации динамической памяти типа DRAM, используемой сегодня). Однако память не была по-настоящему "random" (не обладала произвольным доступом), поскольку она фактически находилась во вращающемся барабане, который совершал полный оборот за 1 секунду. Конкретные области памяти могли быть считаны только тогда, когда участок барабана, где они находились, оказывался над считывателем. Из-за этого возникали серьёзные задержки. Позднее Атанасов добавил перфорационную машину (в те времена перфокарты очень широко использовались организациями для хранения документов и выполнения расчётов), чтобы хранить данные, которые не могли поместиться в барабан памяти.

В ретроспективе, компьютер ABC был не так уж полезен. Его даже нельзя было запрограммировать. Но, по крайней мере, на концептуальном уровне он представлял собой очень важный этап в развитии компьютеров и стал прародителем компьютеров будущего. Работая над этой машиной, Атанасов пригласил Джона Мочли (John W. Mauchly) посмотреть на своё изобретение. Эта встреча оказалась знаковой. И вот почему.

ENIAC


Нажмите на картинку для увеличения.

7 декабря 1941 года Япония напала на Перл-Харбор, втянув Соединённые Штаты во Вторую мировую войну. Каждая воюющая страна столкнулась с проблемой создания баллистических таблиц стрельбы для всех производимых типов артиллерии. Это был очень длительный и утомительный процесс. Поэтому армия США предоставляла средства Электротехнической школе Мура при Университете штата Пенсильвания на разработку электронного компьютера, который смог бы облегчить процесс создания баллистических таблиц стрельбы. Вы уже, должно быть, догадались, что участие во всём этом принимал уже известный нам Джон Мочли, он взялся за проект вместе с талантливым аспирантом по имени Дж. Преспер Эккерт (J. Presper Eckert).

Но Вторая мировая война закончилась до того, как машина была готова. Работа над компьютером была завершена в 1946 году, и публике был представлен "монстр" весом в 30 тонн, состоящий из 15-метровых шкафов, 18 000 вакуумных ламп, 1500 реле, 70 000 резисторов, 10 000 конденсаторов и 6000 ручных переключателей и потребляющий 200 киловатт. Хотя разработка этого компьютера закончилась уже после войны, он всё же принёс пользу. Производительность машины была невероятно высокой: 5000 операций сложения, 357 умножений или 38 делений в секунду. Задачи, на которые у математика уходило 20 часов работы, ENIAC решал всего за 30 секунд.

Основная проблема этого компьютера, помимо ненадёжности, присущей всем машинам на вакуумных лампах, заключалась в том, что он не был программируемым в общепринятом смысле этого слова. "Программы" вводили сотрудницы лаборатории (так называемые "ENIAC girls") с помощью штекерных панелей и блоков переключателей. Этот процесс обычно занимал от нескольких часов до нескольких дней. Кроме того, в отличие от компьютера ABC, ENIAC работал с десятичными, а не с двоичными числами, и это был своего рода шаг назад.

Тем не менее, ENIAC на славу послужил Соединённым Штатам, особенно после дальнейшей модернизации, пока в 1955 году его не "отправили в отставку". За время своего существования ENIAC работал над самыми разными проблемами: прогнозы погоды, исследование случайных чисел, теплового воспламенения, аэродинамической трубы, расчёт траектории артиллерийских снарядов и даже разработка водородной бомбы. Подсчитали, что за свою "жизнь" ENIAC сделал больше расчётов, чем всё человечество вплоть до 1945 года.

Хотя история компьютера ENIAC заканчивается в 1955 году, Мочли и Эккерту предстоит ещё многое сделать.



СОДЕРЖАНИЕ

Высочайшая надежность обусловлена двойной-тройной избыточностью узлов и блоков, заложенной при проектировании, а также уникальными построениями архитектуры и структуры в сочетании с решениями внутреннего математического обеспечения и внешней операционной среды.Одним из главных преимуществ является организация системы ввода/вывода, при которой возможно одновременное параллельное выполнение операций по многим десяткам каналов ввода/вывода без остановки процессов вычисления.Наличие от 10 до 20 процессоров и параллельное выполнение ввода/вывода обеспечивают высокую производительность и вычислительную мощность и позволяют одновременно решать множество задач.

Одним из важнейших преимуществ платформы мэйнфрейм является то обстоятельство, что архитектура мэйнфреймов в сочетании с возможностями операционных систем IBM позволяет динамически перераспределять вычислительные ресурсы между задачами в соответствии с текущими потребностями и приоритетами. Это означает, что наиболее приоритетным задачам в отдельные критические моменты можно передать всю или наибольшую часть вычислительной мощности мэйнфрейма. Таким образом, достигается достаточно равномерная загрузка вычислительных ресурсов по времени.

Современные модели мэйнфреймов IBМ, являющиеся развитием линии S/390 , под общим названием еServer zSeries , основаны на архитектуре z/Architecture , которая представляет собой расширение архитектуры ESA . Данная архитектура позволяет обеспечить полноценную поддержку 64-разрядной реальной и виртуальной памяти, поддерживает кластеризацию (до 640 процессоров) и виртуальные машины, позволяющие выполнять сотни и тысячи экземпляров других операционных систем, в частности, Linux, позволяет устранять проблемы, связанные с недостатком адресуемой памяти, и с помощью интеллектуального диспетчера ресурсов (Intelligent Resource Director, IRD) может автоматически направлять имеющиеся ресурсы на решение наиболее приоритетных задач.

Надежность и отказоустойчивость мейнфреймов IBM z Series обеспечивается за счет целого ряда функций: динамическое резервирование памяти , расширенное динамическое переконфигурирование системы, возможность перезагрузки части памяти – это лишь малая часть обширного списка уникальных возможностей, заложенных как в архитектуре, так и в системном программном обеспечении.

В связи с расширением применения Linux на мейнфрейме серверы z / Series и S /390 (модели 9672 генерации G 6) обретают новую жизнь. На одной платформе, имеющей высокую надежность, производительность и масштабируемость, возможно установить большое количество различных приложений, использующих разные операционные среды.

При использовании Linux-технологий под управлением операционной среды z/VM на одной платформе мэйнфрейм можно иметь сотни и тысячи Linux-серверов. Для каждого приложения, каждой базы данных используется отдельный Linux-сервер. Linux-серверы эффективно используются для создания файл-серверов, почтовых серверов, web-серверов и т.д. Таким образом, имеет место консолидация Linux-серверов на одной платформе.

При использовании z/VM можно в режиме Online создавать по мере необходимости новые Linux-серверы. При создании Linux-серверов под управлением z/VM не требуется жесткого закрепления определенного объема оперативной памяти за каждым сервером. В этом случае память для серверов является виртуальной. Для связи Linux-серверов с локальными сетями пользователей через Интернет используется имеющийся в архитектуре мейнфрейм специальный узел - Open System Adapter (OSA), который позволяет обмениваться данными со скоростями 1 или 2 Gbit в сек. для платформы S/390 (модели 9672 генерации G6) и 1, 2 или 4, а в новейших разработках и 10 Gbit в сек. для платформы z/Series. При этом один адаптер OSA может использоваться многими или всеми имеющимися в мейнфрейме Linux-серверами, динамически переключаясь между ними в зависимости от текущих потребностей и приоритетов.

Мэйнфреймы семейства zSeries обладают мощнейшими функциями обеспечения безопасности данных, реализованными как на программном, так и на аппаратном уровне. Для обеспечения безопасности данных мейнфреймы семейства zSeries содержат встроенный аппаратный программируемый криптографический адаптер, позволяющий выполнять SSL-операции и операции шифрования с открытым ключом. Опыт многих клиентов и самой компании IBM доказывает: «большое железо» открывает большие возможности, в том числе и в области сокращения расходов на инфраструктуру.

Публикации

Термин «мэйнфрейм» в последние годы обычно ассоциируется с занимавшими огромные помещения вычислительными машинами 80-х годов, безвозвратно ушедшими в прошлое на многих российских предприятиях, внедривших для решения своих задач сети персональных компьютеров. Согласно одному из прогнозов Gartner Group, последний мэйнфрейм предполагалось выключить в 1993 году. Срок этот давно истек, но рынок мэйнфреймов остается стабильным и их продажи ежегодно растут.

Езусловно, решение многих задач автоматизации предприятий с помощью персональных компьютеров, RISC-серверов, архитектуры «клиент-сервер» и современных средств разработки приложений оказывается намного дешевле, чем использование мэйнфреймов. Однако, как показала практика, внедрение персональных компьютеров рентабельно далеко не во всех случаях, особенно если речь идет о крупных организациях, где на первый план выходят вопросы хранения больших объемов данных, их целостности, надежности обслуживающих их приложений. И в этих случаях применение мэйнфреймов может оказаться удачной альтернативой набору из персональных компьютеров и RISC-серверов.

Несмотря на нынешнюю популярность ПК и RISC-серверов, мэйнфреймы активно используются на многих предприятиях. Мало того, корпорация IBM, родоначальница данной категории средств вычислительной техники, не только продолжает их выпускать, но и разрабатывает новые модели. Причина приверженности IT-отделов крупных компаний к «большим» ЭВМ заключается в развитых возможностях защиты данных, в высоком быстродействии, в наличии средств резервного копирования и восстановления после сбоев, в поддержке виртуальных машин — то есть во всем том, к чему производители перcональных компьютеров и серверов приблизились только сегодня.

Немного истории

ервые мэйнфреймы были выпущены корпорацией IBM в апреле 1964 года: именно тогда была разработана архитектурная концепция семейства System/360 (S/360). Это был самый дорогостоящий проект в истории вычислительной техники — на его выполнение было затрачено более 5 млрд. долл. Данный проект был направлен на разработку всесторонне продуманного комплекса решений в области аппаратуры, программного обеспечения, технологии производства, организации распространения и технического обслуживания семейства компьютеров, различных по производительности и цене. System/360 стало первым большим семейством компьютеров, позволявшим использовать взаимозаменяемое программное обеспечение и периферийное оборудование. Вместо того чтобы приобретать новую систему по мере роста потребностей и увеличения бюджета, владельцы мэйнфреймов данной серии теперь могли просто наращивать вычислительные возможности по частям, добавляя или заменяя лишь необходимые аппаратные средства. В рамках System/360 предлагался выбор из 5 процессоров, 44 периферийных устройств и 19 комбинаций питания, быстродействия и памяти. Пользователь мог эксплуатировать те же самые магнитные ленты и дисковые накопители с процессорами, различающимися по производительности в 100 раз. Сейчас взаимозаменяемость компонентов и возможность наращивания мощности за счет добавления ресурсов кажется обычным делом, но до появления S/360 ничего подобного не было — каждый компьютер был уникальным устройством и все они были несовместимы между собой. Именно поэтому серия System/360 считается одним из величайших технологических достижений ХХ века. Отметим, что выпуск этой серии оказал заметное влияние и на развитие отечественной вычислительной техники: IBM-совместимые мэйнфреймы успешно выпускались в нашей стране в 70-х и 80-х годах.

Для ЭВМ серии System/360 и последующей за ней System/370 сразу же появлялись наиболее передовые решения, приводящие к повышению производительности, такие как средства динамического преобразования адресов, способность устройства управления обнаруживать все операции, допускающие одновременное исполнение, многопроцессорность на основе общей оперативной памяти, межпроцессорная сигнализация, опережающий просмотр команд для динамического предсказания логических переходов, поддержка многозадачности, страничная организация памяти. Первый компилятор языка высокого уровня и первый экранный редактор также были созданы для ЭВМ именно этих серий.

Модельный ряд мэйнфреймов IBM постоянно совершенствовался: в 70-х годах появились модели, использовавшие большие интегральные схемы и полупроводниковую память, затем появились модели с векторной обработкой данных.

Компьютеры System/360/370 известны как универсальные. Они одновременно могли использоваться для научно-инженерных расчетов и обработки изображений, поддерживать базы данных терабайтных объемов, обслуживать локальные и глобальные сети. По сравнению с появившимися в 70-х годах микрокомпьютерами, эти машины были сравнительно объемными, но прогресс в технологии, приведший к появлению персональных ЭВМ, в еще большей степени повлиял на развитие «больших» машин. В конце 80-х — начале 90-х годов IBM продолжила эволюционное развитие линии мэйнфреймов на основе новой архитектуры ESA (Enterprise System Architecture) — данная серия мэйнфреймов получила название System/390. В 90-х годах число различных моделей стремительно росло, появились модели, использующие КМОП-технологию (КМОП — комплементарный металл-оксидный полупроводник). В середине 90-х годов были выпущены модели, поддерживающие объединение мэйнфреймов в кластеры и резервирование процессоров. В 1998 году была анонсирована модель S/390 Integrated Server, отличающаяся относительно небольшими габаритами (112Ѕ89Ѕ52 см) и весом (100 кг).

Современные модели мэйнфреймов

овременные модели мэйнфреймов IBМ, являющиеся развитием линии S/390, носят название еServer zSeries. Эти серверы основаны на архитектуре z/Architecture, которая представляет собой расширение архитектуры ESA. Данная архитектура позволяет обеспечить полноценную поддержку 64-разрядной реальной и виртуальной памяти, поддерживает кластеризацию (до 640 процессоров) и виртуальные машины, позволяющие выполнять до сотни экземпляров других операционных систем (например, Linux), позволяет устранять проблемы, связанные с недостатком адресуемой памяти, и с помощью интеллектуального диспетчера ресурсов (Intelligent Resource Director, IRD) может автоматически направлять имеющиеся ресурсы на решение наиболее приоритетных задач.

Новейший сервер из этого семейства — IBM zSeries 990 (z990) — обладает расширенным набором функций для построения центров обработки данных, обработки транзакций и интеграции приложений.

Серверы семейства zSeries ориентированы на обеспечение высочайшего уровня доступности приложений. Они отличаются высокой надежностью и наделены средствами самонастройки и самовосстановления, обладают встроенными механизмами предотвращения неисправностей, высокой отказоустойчивостью. Технология наращивания вычислительных ресурсов по требованию (Capacity Upgrade on Demand), реализованная в серверах этой серии, позволяет без нарушения работы системы устанавливать дополнительные центральные процессоры, устройства внутреннего сопряжения, иное аппаратное обеспечение. Отметим, что средний срок наработки на отказ мэйнфреймов этой серии оценивается в 15 лет.

Поскольку безопасность данных становится важнейшим фактором современной IT-индустрии, мэйнфреймы семейства zSeries содержат встроенный аппаратный программируемый криптографический адаптер, позволяющий выполнять SSL-операции и операции шифрования с открытым ключом.

Программное обеспечение для мэйнфреймов

Операционные системы

Из операционных систем для данной платформы отметим z/OS, созданную для новой 64-разрядной архитектуры z/Architecture и являющуюся дальнейшим развитием ОС OS/390. В этой операционной системе наиболее полно использованы новые возможности указанной архитектуры.

Помимо этого IBM выпускает для данной платформы операционную систему z/VM, позволяющую решить задачу построения мультисистемных решений для операционных систем типа z/OS, OS/390, TPF, VSE/ESA, CMS, Linux для S/390 или Linux для zSeries с помощью создания виртуальных машин. Для монитора виртуальных машин и гостевых операционных систем поддерживается 64-разрядная адресация.

Одним из важных элементов стратегии IBM в области электронного бизнеса, охватывающей все выпускаемые корпорацией серверные платформы, является поддержка Linux. В декабре 1999 года в IBM завершились работы по переносу Linux в S/390. Диалект Linux for S/390 является самостоятельной операционной системой и не требует для своей работы наличия другой ОС.

Для этой аппаратной платформы имеется также ряд операционных систем других производителей.

Иное программное обеспечение

Средства управления системой, поддержки безопасности и инструменты резервного копирования серверов zSeries производятся как самой IBM, так и другими компаниями, например Computer Associates. СУБД для данной платформы производят IBM (DB2 Universal Database, IMS), Software AG (ADABAS), Oracle. Для данной платформы существует и J2EE-совместимый сервер приложений WebSphere Application Server for z/OS.

Для серверов zSeries разработаны офисные и издательские пакеты, средства графики, трехмерного моделирования, САПР, трансляторы с различных языков высокого уровня, включая FORTRAN, PL/1, COBOL, PASCAL, BASIC/VM, SmallTalk, средства разработки, пакеты математической статистики, ПО для научных исследований, средства автоматизации управления производством, средства автоматизации банковской деятельности. В целом список имеющегося программного обеспечения для данной платформы весьма внушителен.

***

Итак, вопреки неутешительным прогнозам Gartner Group, мэйнфреймы активно производятся, совершенствуются и используются, хотя вследствие дороговизны этих устройств их применение будет экономически эффективно для решения отнюдь не любой задачи.

В каких случаях действительно необходимы именно мэйнфреймы? Как правило, их использование рентабельно при высоких требованиях к производительности (от 100 млн. операций в секунду) и к защищенности от несанкционированного доступа и сбоев, при необходимости централизованного хранения и обработки больших объемов данных. И конечно, при наличии средств, достаточных для реализации указанных требований.

Материалы для статьи предоставлены компанией «ГЕТНЕТ» (