Какая цветовая модель изображена на рисунке. Что такое цветовая модель. Где используются изображения в режиме RGB

Цветовая модель RGB (от англ. Red, Green, Blue - красный, зелёный, синий) - аддитивная цветовая модель, описывающая способ синтеза цвета для цветовоспроизведения. В российской традиции иногда обозначается как КЗС.

История
В 1861 г. английский физик Джеймс Кларк Максвелл выступил с предложением использовать способ получения цветного изображения, который известен как - аддитивное слияние цветов. Аддитивная (суммирующая) система цветопередачи означает, что цвета в этой модели добавляются к черному (Black) цвету. Аддитивное смещение цветов можно трактовать как, - процесс объединения световых потоков различных цветов до того, как они достигнут глаза.
Аддитивными моделями цвета (от англ. add - складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на
Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.
Существуют две разновидности аддитивной модели цвета: аппаратно зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному.
Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.
В 1931 г. Международная комиссия по освещению (CIE) стандартизовала цветовую систему, а также завершила работу, позволившую создать математическую модель человеческого зрения. Было принято цветовое пространство CIE 1931 XYZ, являющееся базовой моделью по сей день.

Механизм формирования цветов
При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых цветов в разных соотношениях.На представлена цветовая модель . R+G=Y (Yellow - желтый); G+B=C (Cyan - голубой); B+R=M (Magenta - пурпурный).Сумма всех трех основных цветов в равных долях дает белый (White) цвет R+G+B=W (White - белый). Например, на экране монитора с электронно-лучевой трубкой, а также аналогичного телевизора изображение строится при помощи засветки люминофора пучком электронов. При таком воздействии люминофор начинает излучать свет. В зависимости от состава люминофора, этот свет имеет ту или иную окраску.
Промежуточные оттенки получаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанный оттенок. Если же зерна одного цвета засветить не так, как остальные, то смешанный цвет не будет оттенком серого, а приобретет окраску. Такой способ формирования цвета напоминает освещение белого экрана в полной темноте разноцветными прожекторами. Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы, RGB 1 бит на каждый компонент RGB то мы получим все восемь различных цветов . На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256 х 256 х 256 = 16 777 216 цветов. Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. . Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие. Возможность отобразить не менее 16,7 миллиона оттенков это полно цветные типы изображения которые иногда называют True Color (истинные или правдивые цвета). потому что человеческий глаз все равно не в силах различить большего разнообразия. Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная - черному цвету. Поэтому белый цвет имеет в десятеричном представлении код (255,255,255), а в шестнадцатеричном - FFFFFF. Черный цвет кодирует соответственно (0,0,0) или 000000. Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях (200,200,200) или C8C8C8 получается светло-серый цвет, а при значениях (100,100,100) или 646464 - темно-серый. Чем более темный оттенок серого нужно получить, тем меньшее число нужно вводить в каждое текстовое поле. Черный цвет образуется, когда интенсивность всех трех составляющих равна нулю, а белый - когда их интенсивность максимальна.

Ограничения
У модели цвета RGB есть три принципиальных недостатка: Первый - недостаточность цветового охвата. Независимо от размера цветового пространства модели цвета RGB, в ней невозможно воспроизвести много воспринимаемых глазом цветов (например, спектрально чистые голубой и оранжевый). У таких цветов в формуле цвета RGB имеются отрицательные значения интенсивностей базового цвета, а реализовать не сложение, а вычитание базовых цветов при технической реализации аддитивной модели очень сложно. Этот недостаток устранен в перцептивной аддитивной модели.
Второй недостаток модели цвета RGB состоит в невозможности единообразного воспроизведения цвета на различных устройствах (аппаратная зависимость) из-за того, что базовые цвета этой модели зависят от технических параметров устройств вывода изображений. Поэтому, строго говоря, единого цветового пространства RGB не существует, области воспроизводимых цветов различны для каждого устройства вывода. Более того, даже сравнивать эти пространства численно можно только с помощью других моделей цвета. Третий недостаток коррелированность цветовых каналов (при увеличении яркости одного канала другие уменьшают ее).

Достоинства
Множество компьютерного оборудования работает с использованием модели RGB, кроме того, эта модель очень проста, ее "генетическое" родство с аппаратурой (сканером и монитором), широкий цветовой охват (возможность отображать многообразие цветов, близкое к возможностям человеческого зрения) этим объясняется ее широкое распространение.
Главные достоинства модели цвета RGB состоят в ее простоте, наглядности и в том, что любой точке ее цветового пространства соответствует визуально воспринимаемый цвет.
Благодаря простоте этой модели она легко реализуется аппаратно. В частности, в мониторах управляемыми источниками света с различным спектральным распределением служат микроскопические частицы люминофора трех видов. Они хорошо заметны через увеличительное стекло, но при рассматривании монитора невооруженным глазом из-за явления визуального смыкания видно непрерывное изображение.
Интенсивность светового излучения в мониторах на основе электроннолучевых трубок регулируется с помощью трех электронных пушек, возбуждающих свечение люминофоров. Доступность многих процедур обработки изображения (фильтров) в программах растровой графики, небольшой (по сравнению с моделью CMYK) объем, занимаемый изображением в оперативной памяти компьютера и на диске.

Применение
Цветовая модель RGB повсеместно используется в компьютерной графике по той причине, что основное устройство вывода информации (монитор) работает именно в этой системе. Изображение на мониторе образуется из отдельных светящихся точек красного, зеленого и синего цветов. Посмотрев на экран работающего монитора через увеличительное стекло, можно разглядеть отдельные цветные точки - а еще проще это увидеть на экране телевизора, поскольку его точки значительно крупнее.
Широко используется при разработке электронных (мультимедийных) и полиграфических изданий.
Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии.
В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенка цветного изображения.

Используемые источники
1. Домасев М. В. Цвет, управление цветом, цветовые расчеты и измерения. Санкт-Петербург: Питер 2009 г.
2. Петров М. Н. Компьютерная графика. Учебник для вузов. Санкт-Петербург: Питер 2002 г.
3. ru.wikipedia.org/wiki/Цветовая модель.
4. darkroomphoto.ru
5. bourabai.kz/graphics/0104.htm
6. litpedia.ru
7. youtube.com/watch?v=sA9s8HL-7ZM

Цветовая модель RGB

Данный вид цветовой модели базируется на трех основных цветах, смешение которых в различных пропорциях дает все остальные. Причем данные используемые краски отражены в названии модели: красный (Red), зеленый (Green) и синий (Blue) – RGB.

Цветовая модель RGB складывается субтрактивно. Дело в том, что полное сочетание всех трех цветов в их "чистом" виде, дает в итоге белый. Сама же модель относится к аддитивным цветовым моделям, потому как цвета получаются добавлением к черному.

Кодировка цветовой модели RGB происходит по трем каналам, каждый из которых имеет диапазон возможных принимаемых значений, равный 256 (от 0 до 255). В итоге, не сложно посчитать, что данная компьютерная цветовая модель сможет смоделировать 256*3 = 16777216 различных оттенков.

Цветовая модель CMYK

Данная цветовая модель имеет в своем основании 4 базовых цвета, также аббревиатурно заложенных в название: голубой (Cyan), малиновый (Magenta), желтый (Yellow) и черный (blacК). Для черного выбрали последнюю букву, так как В была уже занята синим цветом в модели RGB.

Их смешение происходит аддитивно, но образование имеет субтрактивную основу: они получаются путем вычитания цветов из белого (например, пурпурный выходит вычитанием зеленого и т.п.). Именно поэтому субтрактивную цветовую модель иногда еще называют исключающей.

Цветовая модель CMYK является основной в полиграфии. Она часто применяется в цветных принтерах и плоттерах. При этом необходимо отметить, что цветовая модель CMYK по сравнению с RGB имеет меньшее количество получаемых оттенков. Это необходимо учитывать при конвертации.

Более подробно о данной цветовой модели в компьютерной графике мы расскажем на странице нашей статьи: "Цветовая модель CMYK".

Цветовая модель HSB (HSV)

Если рассматривать данную цветовую модель, то в первую очередь бросается в глаза ее сходство с RGB. Базовые цвета этих моделей совпадают. Зачем же тогда было создавать новую модель?

На самом деле цветовая модель HSB имеет совсем иную систему координат. В ее основе лежат такие параметры, как тон (Hue), насыщенность (Saturation) и яркость (Brightness/Value). В цветовой модели HSV множество получаемых цветов представляет собой шестиугольник, все шесть вершин которого являются пиком одного из основных цветов: красный, зеленый, синий (RGB), голубой, малиновый, желтый (CYM). Черный цвет выведен в качестве вершины конуса. Он регулируется таким параметром, как яркость.

Цветовая модель HSV более ориентирована на интуитивное понятие человека о цвете и тоне.

Цветовая модель HSL

Такая компьютерная цветовая модель по своей основе похожа на HSB (HSV). Но ее основными параметрами являются: тон (Hue), светлота (Lightness) и насыщенность (Brightness/Value). Если представить цветовую модель HSL в виде фигуры, то это будет двойной (отраженный) шестигранный конус. Его основанием, как и у HSB (HSV), служат базовые цвета, а вершинами: белый цвет, регулируемый насыщенностью, и черный, характеризуемый светлотой.

Таким образом, цветовая модель HSL является одним из наиболее ярких примеров интуитивных понятий тона, насыщенности и яркости (светлоты).

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.

Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.

Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.

Цветовая модель LAB

Данная компьютерная цветовая модель является аппаратно-независимой. Это позволяет ей служить стандартом для оптимизации других моделей с целью получения предсказуемого цвета на различных устройствах (сканнер, принтер, монитор). Цветовая модель LAB является трехканальной. При этом, изменение цветов происходит по таким параметрам, как а – от зеленого к красному и b – от синего к желтому. Яркость цвета в данной цветовой модели отделена от параметров а и b. Это делает более удобным регулировку яркости, резкости и тона.

Цветовая модель LAB позволяет оптимизировать растровый файл под различные устройства и привести их визуализацию к одному цвету.

В данной статье мы рассказали вам об основных цветовых моделях в компьютерной графике, описали их особенности и возможности, выделили наиболее значимые характеристики и параметры. Теперь вы сможете попробовать самостоятельно "поиграть" с цветами и цветовыми моделями в любой графической программе. Удачных вам экспериментов и ярких свершений!

Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

На принципе такого деления света основан цветной телевизор или монитор Вашего компьютера. Если говорить очень грубо, то монитор, в который Вы сейчас смотрите состоит из огромного количества точек (их количество по вертикали и горизонтали определяет разрешение монитора) и в каждую эту точку светят по три "лампочки": красная, зеленая и синяя. Каждая "лампочка" может светить с разной яркостью, а может не светить вовсе. Если светит только синяя "лампочка" - мы видим синюю точку. Если только красная - мы видим красную точку. Аналогично и с зеленой. Если все лампочки светят с полной яркостью в одну точку, то эта точка получается белой, так как все градации этого белого опять собираются вместе. Если ни одна лампочка не светит, то точка кажется нам черной. Так как черный цвет - это отсутствие света. Сочетая цвета этих "лампочек", светящихся с различной яркостью можно получать различные цвета и оттенки.

Яркость каждой такой лампочки определяется интенсивностью (делением) от 0 (выключенная "лампочка") до 255 ("лампочка", светящая с полной "силой"). Такое деление цветов называется цветовой моделью RGB от первых букв слов "RED" "GREEN" "BLUE" (красный, зеленый, синий).


Таким образом белый цвет нашей точки в цветовой модели RGB можно записать в следующем виде:

R (от слова "red", красный) - 255

G (от слова "green", зеленый) - 255

B (от слова "blue", синий) - 255


"Насыщенный" красный будет выглядеть так:



Желтый цвет будет иметь следующий вид:


Так же, для записи цвета в rgb, используют шестнадцатеричную систему. Показали интенсивности запмсывают по порядку #RGB:

Белый - #ffffff

Красный - #ff0000

Черный - #00000

Желтый - #ffff00

Цветовая модель CMYK

Итак, теперь мы знаем, каким хитрым способом наш компьютер передает нам цвет той или иной точки. Давайте теперь воспользуемся приобретенными знаниями и попробуем получить белый цвет с помощью красок. Для этого купим в магазине гуашь, возьмем баночки с красной, синей и зеленой краской, и смешаем их. Получилось? И у меня нет.

Проблема в том, что наш монитор излучает свет, то есть светится, но в природе многие объекты не обладают таким свойством. Они попросту отражают белый свет, который на них падает. Причем если предмет отражает весь спектр белого света, то мы видим его белым, а если же часть этого света им поглощается - то не совсем.

Примерно так: мы светим на красный предмет белым светом. Белый свет можно представить как R-255 G-255 B-255. Но предмет не хочет отражать весь свет, который мы на него направили, и нагло ворует у нас все оттенки зеленого и синего. В итоге отражает только R-255 G-0 B-0. Именно поэтому он нам и кажется красным.

Так что для печати на бумаге весьма проблематично пользоваться цветовой моделью RGB. Для этого, как правило, используется цветовую модель CMY (цми) или CMYK (цмик). Цветовая модель CMY основана на том, что сам по себе лист бумаги белый, то есть отражает практически весь спектр RGB, а краски, наносимые на нее, выступают в качестве фильтров, каждый из которых "ворует" свой цвет (либо red, либо green, либо blue). Таким образом цвета этих красок определяются вычитанием из белого по одному цветов RGB. Получаются цвета Cyan (что-то вроде голубого), Magenta (можно сказать, розовый), Yellow (желтый).


И если в цветовой модели RGB градация каждого цвета происходила по яркости от 0 до 255, то в цветовой модели CMYK у каждого цвета основным значением является "непрозрачность" (количество краски) и определяется процентами от 0% до 100%.


Таким образом, белый цвет можно описать так:

C (cyan) - 0%; M (magenta) - 0%; Y (yellow) - 0%.

Красный - C-0%; M-100%; Y-100%.

Зеленый - C-100%; M-0%; Y-100%.

Синий - C-100%; M-100%; Y-0%.

Черный - C-100%; M-100%; Y-100%.

Однако, это возможно только в теории. А на практике же обойтись цветами CMY не получается. И черный цвет при печати получается скорее грязно-коричневым, серый не похож сам на себя, а темные оттенки цветов создать проблематично. Для урегулирования конечного цвета используется еще одна краска. Отсюда и последняя буква в названии CMYK (ЦМИК). Расшифровка этой буквы может быть разной:

Это может быть сокращение от blacK (черный). И в сокращении используется именно последняя буква, чтобы не спутать этот цвет с цветом Blue в модели RGB;

Печатники очень часто употребляют слово "Контур" относительно этого цвета. Так что возможно, что буква K в абревиатуре CMYK (ЦМИК) - это сокращение от немецкого слова "Kontur";

Так же это может быть сокращение от Key-color (ключевой цвет).

Однако ключевым его назвать сложно, так как он является скорее дополнительным. И на черный этот цвет не совсем похож. Если печатать только этой краской изображение получается скорее серое. Поэтому некоторые придерживаются мнение, что буква K в обревиатуре CMYK означает "Kobalt" (темно-серый, нем.).

Как правило, используется для обозначения этого цвета термин "black" или "черный".

Печать с использованием цветов CMYK называют "полноцветной" или "триадной".

*Стоит, наверное, сказать, что при печати CMYK (ЦМИК) краски не смешиваются. Они ложатся на бумагу "пятнами" (растром) одна рядом с другой и смешиваются уже в воображении человека, потому что эти "пятна" очень малы. То есть изображение растрируется, так как иначе краска, попадая одна на другую, расплывается и образуется муар или грязь. Существует несколько разных способов растрирования.


Цветовая модель grayscale

Изображение в цветовой модели grayscale многие ошибочно называют черно-белым. Но это не так. Черно-белое изображение состоит только из черных и белых тонов. В то время, как grayscale (оттенки серого) имеет 101 оттенок. Это градация цвета Kobalt от 0% до 100%.


Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Цветовые модели HSB и HLS

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.


Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.


Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.


Цветовая модель LAB

В этой цветовой модели цвет состоит из:

Luminance - освещенность. Это совокупность понятий яркость (lightness) и интенсивность (chrome)

A - это цветовая гамма от зеленного до пурпурного

B - цветовая гамма от голубого до желтого


То есть двумя показателями в совокупности определяется цвет и одним показателем определяется его освещенность.

LAB - Это аппаратно-независимая цветовая модель, то есть она не зависит от способа передачи нам цвета. Она содержит в себе цвета как RGB так и CMYK, и grayscale, что позволяет ей с минимальными потерями конвертировать изображение из одной цветовой модели в другую.

Еще одним достоинством является то, что она, в отличие от цветовой модели HSB, соответствует особенностям восприятия цвета глазом человека.

Часто используется для улучшения качества изображения, и конвертирования изображений из одного цветового пространства в другое.



Цели урока:

  • Образовательные : Дать основополагающие знания о физических моделях восприятия цвета объекта RGB и CMY(K). Объяснить взаимодействие цветовых координат данных моделей.
  • Развивающие : развивать умение представлять результаты исследования в заданном формате
  • Воспитательные: развивать навыки самостоятельного выполнения задания, развивать эстетический вкус, проявлять творческое отношение к работе

Задачи урока:

  • Повторить: назначение и основные функции графического редактора, принципы формирования изображения в растровой и векторной графике
  • Научить определять основные цвета при помощи цветовых моделей
  • Проверить усвоение материала. Проанализировать выявленные ошибки.

В результате изучения темы учащиеся должны:

знать:

  • физические модели восприятия цвета объекта RGB и CMY(K)
  • соотношение моделей RGB и CMY

уметь:

  • определять цвета по заданной цветовой схеме

Оборудование: ПК, программа PowerPoint, мультимедийный проектор, интерактивная доска, раздаточный материал, презентация «Цветовые модели».

Ход урока

План урока

  1. Организационный момент (2 мин)
  2. Фронтальный опрос (3 мин)
  3. Объяснение нового материала (19 мин)
  4. Просмотр презентации (8 мин)
  5. Проверка усвоения материала (10 мин)
  6. Подведение итогов урока (1 мин).
  7. Домашнее задание (2 мин)

УРОК 45 мин

1. Организационный момент (2 мин ).

  • Проверка присутствующих
  • Оформление журнала
  • Ознакомление учащихся с темой урока

2. Фронтальный опрос (3 мин ).

Учащиеся с места должны ответить на вопросы:

а) назначение графического редактора

Графический редактор - программа (или пакет программ), позволяющая создавать и редактировать изображения с помощью компьютера.

б) принципы формирования изображения в растровой и векторной графике

В растровой графике изображение представляется двумерным массивом точек (элементов растра), цвет и яркость каждой из которых задается независимо. Пиксель - основной элемент всех растровых изображений. Векторная графика описывает изображение с помощью математических формул.

в) Объяснение нового материала (19 мин )

Преподаватель: Считается, что наш человеческий глаз способен различать около 16 млн. оттенков цвета. Возникает естественный вопрос, как объяснить компьютеру, что один объект красного цвета, а другой розового? В чем между ними разница, так хорошо различимая нами на глаз. Для формального описания цвета придумано несколько цветовых моделей и соответствующих им способов кодирования.

Запишем в тетрадь определение:

Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью.

Сегодня мы с вами рассмотрим модели RGB и CMY(K).

Перепишите это в тетрадь.

Цветовая модель RGB (аббревиатура английских слов R ed, G reen, B lue - красный, зелёный, синий) - аддитивная цветовая модель.

Используется для излучаемого света , т.е. при подготовке экранных документов.

Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза.

Любой цвет можно представить в виде комбинации 3 основных цветов R ed (красный), G reen (зелёный), B lue (синий). Эти цвета называют цветовыми составляющими.

Аддитивной модель называется потому, что цвета получаются путём добавления (англ. addition) к черному.

Запишите в тетрадь основные цвета. (Учащиеся переписывают материал с доски)

Преподаватель: Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 2563 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определенного цвета. Чем ярче цветная точка (красная, зеленая, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

Посмотрите на доску и на выданный материал.

На интерактивной доске выводится модель RGB (аналогичная схема в раздаточном материале у каждого учащегося). Преподаватель продолжает объяснять и показывает на схеме.

Изображение в данной цветовой модели состоит из трёх каналов.

  • Чистый красный может быть определён как как (255,0,0) - R ed
  • Чистый зеленый (0,255,0) - G reen
  • Чистый ярко-синий цвет (0,0,255) – B lue

На схеме вы видите, что при смешении основных цветов (основными цветами считаются красный, зелёный и синий) мы получаем

  • при смешении синего (B) и красного (R), мы получаем пурпурный или лиловый (M magenta)
  • при смешении зеленого (G) и красного (R) - жёлтый (Y yellow)
  • при смешении зеленого (G) и синего (B) - циановый (С cyan)
  • при смешении всех трёх цветовых компонентов мы получаем белый цвет (W)
  • Если яркость всех трех базовых цветов минимальна (равна нулю), получается черная точка (Черный - (0,0,0))
  • Если яркость всех трех цветов максимальна (255), при их сложении получается белая точка (Белый - (255,255,255)
  • Если яркость каждого базового цвета одинакова, получается серая точка (чем больше значение яркостей, тем светлее).

Точка какого-нибудь красивого, сочного цвета получается в том случае, если при смешении одного (или двух) цветов гораздо меньше, чем двух (одного) других. Например, сиреневый цвет получается, если мы возьмем по максимуму красного и синего цветов и не возьмем зеленого , а желтый цвет - достигается смешением красного и зеленого.

Устройства ввода графической информации (сканер, цифровая камера) и устройство вывода (монитор) работают именно в этой модели.

Цветовая модель RGB имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов CMYK, поэтому иногда изображения, замечательно выглядящие в RGB, значительно тускнеют и гаснут в модели CMYK, которую мы сейчас рассмотрим.

Цветовая модель CMY ( K)

Окрашенные несветящиеся объекты поглощают часть спектра белого света, освещающего их, и отражают оставшееся излучение. В зависимости от того, в какой области спектра происходит поглощение, объекты отражают разные цвета (окрашены в них).

На доске уже написано название модели и базовые цвета.

CMY ( K )
C yan M agenta Y ellow BlacK
Голубой Пурпурный Желтый Черный

Перепишите это в тетрадь.

Цвета, которые используют белый свет, вычитая из него определенные участки спектра, называются субтрактивными ("вычитательными") . Для их описания используется субтрактивная модель CMY (С - это Cyan (Голубой), М - это Magenta (Пурпурный), Y - Yellow (Желтый)). В этой модели основные цвета образуются путем вычитания из белого цвета основных аддитивных цветов модели RGB.

Если вычесть из белого три первичных цвета RGB, мы получим тройку дополнительных цветов CMY.

В этом случае и основных субтрактивных цветов будет три:

  • голубой (белый минус красный)
  • пурпурный (белый минус зеленый)
  • желтый (белый минус синий)

Цветовая модель CMY ( K ) используется при работе с отраженным цветом (при печати) .

При смешениях двух субтрактивных (вычитаемых) составляющих результирующий цвет затемняется (поглощено больше света, положено больше краски). Таким образом:

Данная модель - основная модель полиграфии. Пурпурный, голубой, желтый цвета составляют так называемую полиграфическую триаду , и при печати этими красками большая часть видимого цветового спектра может быть воспроизведена на бумаге.

Однако реальные краски имеют примеси, их цвет может быть не идеальным, и смешение трех основных красок, которое должно давать черный цвет, дает вместо этого неопределенный грязно-коричневый (посмотрите на выданный материал). Кроме того, для получения интенсивного черного необходимо положить на бумагу большое количество краски каждого цвета. Это приведет к переувлажнению бумаги, качество печати при этом снизится. К тому же использование большого количества краски неэкономно.

Для улучшения качества отпечатка в число основных полиграфических красок (и в модель) внесена черная краска . Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. Черный компонент сокращается до буквы К, поскольку эта краска является главной, ключевой (K ey) в процессе цветной печати(или blacK ).

Как и для модели RGB, количество каждого компонента может быть выражено в процентах или градациях от 0 до 255.

Печать четырьмя красками, соответствующими CMYK, также называют печатью триадными красками .

Цвет в CMYK зависит не только от спектральных характеристик красителей и от способа их нанесения, но и их количества, характеристик бумаги и других факторов. Фактически, цифры CMYK являются лишь набором аппаратных данных для фотонаборного автомата и не определяют цвет однозначно.

Цветовой круг

При обработке изображений необходимо ясно понимать взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK. Без знания этих закономерностей трудно оценить качество цвета, назначить корректирующие операции, да и просто разумно использовать простейшие инструменты, предназначенные для работы с цветом.

Если эти две модели представить в виде единой модели , то по­лучится усеченный вариант цветового круга, в котором цвета располагаются и известном еще со школы порядке (только без производного оранжевого цвета): красный (R), желтый (Y), зеленый (G), голубой (C), синий (В) – пурпурный (лиловый, фиолетовый) М - Magenta

КАЖДЫЙ ОХОТНИК ЖЕЛАЕТ ЗНАТЬ, ГДЕ СИДИТ ФАЗАН
или
КАК ОДНАЖДЫ ЖАН - ЗВОНАРЬ ГОЛОВОЙ СВАЛИЛ ФОНАРЬ
или
КАЖДЫЙ ОФОРМИТЕЛЬ ЖЕЛАЕТ ЗНАТЬ, ГДЕ СКАЧАТЬ ФОТОШОП

Рассмотрим самую простую и востребованную модель, называемую цветовым кругом. В нем на одинаковом расстоянии друг от друга размещены координаты основных цветовых систем RGB и CMYK.

Пары цветов, расположенные на концах одного диаметра (под углом 180 градусов), называются
На цветовом круге основные цвета моделей RGB и CMY находятся в такой зависимости: каждый цвет расположен напротив дополняющего его (комплиментарного) цвета; при этом он находится на равном расстоянии между цветами, с помощью которых он получен.

Комплиментарными цветами являются:

  • зеленый и пурпурный,
  • синий и желтый,
  • голубой и красный.

Дополнительные цвета являются в некотором смысле взаимоисключающими. Добавление любой краски цветового круга компенсирует дополнительную краску, как бы разбавляет ее в результирующем цвете.

Например, чтобы изменить цветовое соотношение в сторону зеленых тонов, следует понизить содержание пурпурного цвета, который является дополнительным к зеленому.

Это утверждение можно выразить в виде следующих кратких формул:

Преподаватель пишет на доске:

А теперь самостоятельно запишите в тетрадь оставшиеся 5 формул:

100%Magenta = 0Green

100%Yellow = 0Blue

0%Magenta = 255Green

0%Yellow = 255Blue.

Прослушайте и запишите в тетрадь предложение:

Голубой цвет противоположен красному, потому что голубые красители поглощают красный цвет и отражают синий и зеленый. Голубой цвет - это отсутствие красного.

Преподаватель спрашивает 5 учащихся с целью изменить формулировку предложения для оставшихся 5 цветов.

Приведем сводку основных и производных правил цветового синтеза по круговой модели (смотрите раздаточный материал):

  • Каждый субтрактивный (аддитивный) цвет находится между двумя аддитивными (субтрактивными).
  • Сложение любых двух цветов RGB (CMY) дает цвет CMY (RGB), лежащий между ними. Например, смешивая зеленый и синий, получим голубой, а смесь желтого и пурпурного образует красный.

Запишите самостоятельно в тетради все возможные соотношения такого вида (6 формул)

Red + Green = Yellow

Blue + Green = Cyan

Red + Blue = Magenta

Cyan+ Magenta = Blue

Cyan + Yellow = Green

Magenta + Yellow = Red.

  • Наложение красного и зеленого с максимальной интенсивностью дает чистый желтый цвет. Уменьшение интенсивности красного смещает результирующий в сторону зеленых оттенков, а снижение вклада зеленого делает цвет оранжевым.
  • Смешение синего и красного в максимальной пропорции дает фиолетовый цвет. Уменьшение доли синего влечет за собой сдвиг в область розового цвета, а уменьшение красного сдвигает цвет в сторону пурпурного.
  • Зеленый и синий цвета образуют голубой. Существует около 65 тысяч различных оттенков голубого, которые можно синтезировать, смешивая в разных пропорциях данные цветовые координаты.
  • Наложение голубой и пурпурной краски максимальной плотности дает глубокий синий цвет.
  • Пурпурный и желтый красители порождают красный цвет. Чем выше плотность составляющих, тем выше его яркость. Уменьшение интенсивности пурпурного придает цвету оранжевый оттенок, снижение доли желтой составляющей дает розовый цвет; Желтый и голубой дают ярко-зеленый цвет. Уменьшение доли желтого порождает изумрудный, а снижение вклада голубого - салатовый.
  • Осветление или затемнение цвета предельной насыщенности влечет за собой снижение его насыщенности.

Запишем в тетради:

Вложение цвета можно увеличивать и уменьшать, регулируя вклады его комплиментарного цвета или смежных цветов.

4. Просмотр презентации (8 мин )

Сейчас мы просмотрим презентацию, чтобы закрепить пройденный материал и узнать, что нас ждет на следующих уроках.

5. Проверка усвоения материала (10 мин )

Прошу вас ответить на вопросы по новой теме:

1. Перечислите базовые цвета моделей RGB и CMY(К).

  • Цветовая модель RGB - Red, Green, Blue - красный, зелёный, синий
  • Цветовая модель CMY - С - это Cyan (Голубой), М - это Magenta (Пурпурный), Y - Yellow (Желтый)

2. Какая цветовая модель используется для излучаемого цвета?

3. Почему ее называют аддитивной?

Аддитивной модель называется потому, что цвета получаются путём добавления (англ. addition) к черному

4. Что означает буква К в цветовой модели CMYК?

Черный компонент, поскольку эта краска является главной, ключевой (K ey) в процессе цветной печати (или blacK ).

5. Для чего используется модель цветовой круг?

Чтобы понимать взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK.

6. Какие цвета называют комплиментарными?

Пары цветов, расположенные на концах одного диаметра на цветовом круге (под углом 180 градусов), называются комплиментарными или дополнительными.

  • Перечислить комплиментарные цвета.
  • зеленый и пурпурный
  • синий и желтый
  • голубой и красный.

6. Подведение итогов урока (1 мин ).

Наш урок подходит к концу. Сегодня вы узнали о цветовых моделях RGB и CMY(К), базовые цвета этих моделей, взаимодействие цветовых координат аддитивной системы RGB и субтрактивной системы CMYK. Знакомство с цветовыми моделями мы продолжим на следующем уроке.

7. Домашнее задание (2 мин )

Запишите домашнее задание:

  1. По модели Цветовой круг повторить основные формулы получения цвета
  2. Профильная школа «Технология обработки текстовой информации. Технология обработки графической и мультимедийной информации» А.В.Могилев, Л.В.Листратова СПб.: БХВ-Петербург, 2010 р.8.2.
  3. Уроки компьютерной графики. CorelDRAW. Учебный курс Л. Левковец СПб.: Питер, 2006 ур.2

Я по образованию программист, но по работе мне пришлось столкнуться с обработкой изображений. И тут для меня открылся удивительный и неизведанный мир цветовых пространств. Не думаю, что дизайнеры и фотографы узнают для себя что-то новое, но, возможно, кому-нибудь это знание окажется, как минимум полезно, а в лучшем случае интересно.

Основная задача цветовых моделей – сделать возможным задание цветов унифицированным образом. По сути цветовые модели задают определённые системы координат, которые позволяют однозначно определить цвет.

Наиболее популярными на сегодняшний день являются следующие цветовые модели: RGB (используется в основном в мониторах и камерах), CMY(K) (используется в полиграфии), HSI (широко используется в машинном зрении и дизайне). Существует множество других моделей. Например, CIE XYZ (стандартные модели), YCbCr и др. Далее дан краткий обзор этих цветовых моделей.

Цветовой куб RGB

Из закона Грассмана возникает идея аддитивной (т.е. основанной на смешении цветов от непосредственно излучающих объектов) модели цветовоспроизведения. Впервые подобная модель была предложена Джеймсом Максвеллом в 1861 году, но наибольшее распространение она получила значительно позже.

В модели RGB (от англ. red – красный, green – зелёный, blue – голубой) все цвета получаются путём смешения трёх базовых (красного, зелёного и синего) цветов в различных пропорциях. Доля каждого базового цвета в итоговом может восприниматься, как координата в соответствующем трёхмерном пространстве, поэтому данную модель часто называют цветовым кубом. На Рис. 1 представлена модель цветового куба.

Чаще всего модель строится так, чтобы куб был единичным. Точки, соответствующие базовым цветам, расположены в вершинах куба, лежащих на осях: красный – (1;0;0), зелёный – (0;1;0), синий – (0;0;1). При этом вторичные цвета (полученные смешением двух базовых) расположены в других вершинах куба: голубой - (0;1;1), пурпурный - (1;0;1) и жёлтый – (1;1;0). Чёрный и белые цвета расположены в начале координат (0;0;0) и наиболее удалённой от начала координат точке (1;1;1). Рис. показывает только вершины куба.

Цветные изображения в модели RGB строятся из трёх отдельных изображений-каналов. В Табл. показано разложение исходного изображения на цветовые каналы.

В модели RGB для каждой составляющей цвета отводится определённое количество бит, например, если для кодирования каждой составляющей отводить 1 байт, то с помощью этой модели можно закодировать 2^(3*8)≈16 млн. цветов. На практике такое кодирование избыточно, т.к. большинство людей не способно различить такое количество цветов. Часто ограничиваются т.н. режимом «High Color» в котором на кодирование каждой компоненты отводится 5 бит. В некоторых приложениях используют 16-битный режим в котором на кодирование R и B составляющих отводится по 5 бит, а на кодирование G составляющей 6 бит. Этот режим, во-первых, учитывает более высокую чувствительность человека к зелёному цвету, а во-вторых, позволяет более эффективно использовать особенности архитектуры ЭВМ. Количество бит, отводимых на кодирование одного пиксела называется глубиной цвета. В Табл. приведены примеры кодирования одного и того же изображения с разной глубиной цвета.

Субтрактивные модели CMY и CMYK

Субтрактивная модель CMY (от англ. cyan - голубой, magenta - пурпурный, yellow - жёлтый) используется для получения твёрдых копий (печати) изображений, и в некотором роде является антиподом цветового RGB-куба. Если в RGB модели базовые цвета – это цвета источников света, то модель CMY – это модель поглощения цветов.

Например, бумага, покрытая жёлтым красителем не отражает синий свет, т.е. можно сказать, что жёлтый краситель вычитает из отражённого белого света синий. Аналогично голубой краситель вычитает из отражённого света красный, а пурпурный краситель вычитает зелёный. Именно поэтому данную модель принято называть субтрактивной. Алгоритм перевода из модели RGB в модель CMY очень прост:

При этом предполагается, что цвета RGB находятся в интервале . Легко заметить, что для получения чёрного цвета в модели CMY необходимо смешать голубой, пурпурный и жёлтый в равных пропорциях. Этот метод имеет два серьёзных недостатка: во-первых, полученный в результате смешения чёрный цвет будет выглядеть светлее «настоящего» чёрного, во-вторых, это приводит к существенным затратам красителя. Поэтому на практике модель СMY расширяют до модели CMYK, добавляя к трём цветам чёрный (англ. black).

Цветовое пространство тон, насыщенность, интенсивность (HSI)

Рассмотренные ранее цветовые модели RGB и CMY(K) весьма просты в плане аппаратной реализации, но у них есть один существенный недостаток. Человеку очень тяжело оперировать цветами, заданными в этих моделях, т.к. человек, описывая цвета, пользуется не содержанием в описываемом цвете базовых составляющих, а несколько иными категориями.

Чаще всего люди оперируют следующими понятиями: цветовой тон, насыщенность и светлота. При этом, говоря о цветовом тоне, обычно имеют в виду именно цвет. Насыщенность показывает насколько описываемый цвет разбавлен белым (розовый, например, это смесь красного и белого). Понятие светлоты наиболее сложно для описания, и с некоторыми допущениями под светлотой можно понимать интенсивность света.

Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник:

Все серые цвета (лежащие на диагонали куба) при этом проецируются в центральную точку. Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус:

При этом тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). Важно понимать, что тон и насыщенность не определены при нулевой интенсивности.

Алгоритм перевода из RGB в HSI можно выполнить, воспользовавшись следующими формулами:

Цветовая модель HSI очень популярна среди дизайнеров и художников, т.к. в этой системе обеспечивается непосредственный контроль тона, насыщенности и яркости. Эти же свойства делают эту модель очень популярной в системах машинного зрения. В Табл. показано изменение изображения при увеличении и уменьшении интенсивности, тона (выполняется поворот на ±50°) и насыщенности.

Модель CIE XYZ

С целью унификации была разработана международная стандартная цветовая модель. В результате серии экспериментов международная комиссия по освещению (CIE) определила кривые сложения основных (красного, зелёного и синего) цветов. В этой системе каждому видимому цвету соответствует определённое соотношение основных цветов. При этом, для того, чтобы разработанная модель могла отражать все видимые человеком цвета пришлось ввести отрицательное количество базовых цветов. Чтобы уйти от отрицательных значений CIE, ввела т.н. нереальные или мнимые основные цвета: X (мнимый красный), Y (мнимый зелёный), Z (мнимый синий).

При описании цвета значения X,Y,Z называют стандартными основными возбуждениями, а полученные на их основе координаты – стандартными цветовыми координатами. Стандартные кривые сложения X(λ),Y(λ),Z(λ) (см. Рис.) описывают чувствительность среднестатистического наблюдателя к стандартным возбуждениям:

Помимо стандартных цветовых координат часто используют понятие относительных цветовых координат, которые можно вычислить по следующим формулам:

Легко заметить, что x+y+z=1, а это значит, что для однозначного задания относительных координат достаточно любой пары значений, а соответствующее цветовое пространство может быть представлено в виде двумерного графика:

Множество цветов, задаваемое таким способом, называют треугольником CIE.
Легко заметить, что треугольник CIE описывает только цветовой тон, но никак не описывает яркость. Для описания яркости вводят дополнительную ось, проходящую через точку с координатами (1/3;1/3) (т.н. точку белого). В результате получают цветовое тело CIE (см. Рис.):

Это тело содержит все цвета, видимые среднестатистическим наблюдателем. Основным недостатком этой системы является то, что используя её, мы можем констатировать только совпадение или различие двух цветов, но расстояние между двумя точками этого цветового пространства не соответствует зрительному восприятию различия цветов.

Модель CIELAB

Основной целью при разработке CIELAB было устранение нелинейности системы CIE XYZ с точки зрения человеческого восприятия. Под аббревиатурой LAB обычно понимается цветовое пространство CIE L*a*b*, которое на данный момент является международным стандартом.

В системе CIE L*a*b координата L означает светлоту (в диапазоне от 0 до 100), а координаты a,b – означают позицию между зелёным-пурпурным, и синим-жёлтым цветами. Формулы для перевода координат из CIE XYZ в CIE L*a*b* приведены ниже:


где (Xn,Yn,Zn) – координаты точки белого в пространстве CIE XYZ, а


На Рис. представлены срезы цветового тела CIE L*a*b* для двух значений светлоты:

По сравнению с системой CIE XYZ Евклидово расстояние (√((L1-L2)^2+(a1^*-a2^*)^2+(b1^*-b2^*)^2)) в системе CIE L*a*b* значительно лучше соответствует цветовому различию, воспринимаемому человеком, тем не менее, стандартной формулой цветового различия является чрезвычайно сложная CIEDE2000.

Телевизионные цветоразностные цветовые системы

В цветовых системах YIQ и YUV информация о цвете представляется в виде сигнала яркости (Y) и двух цветоразностных сигналов (IQ и UV соответственно).

Популярность этих цветовых систем обусловлена в первую очередь появлением цветного телевидения. Т.к. компонента Y по сути содержит исходное изображение в градациях серого, сигнал в системе YIQ мог быть принят и корректно отображён как на старых чёрно-белых телевизорах, так и на новых цветных.

Вторым, возможно более важным плюсом, этих пространств является разделение информации о цвете и яркости изображения. Дело в том, что человеческий глаз весьма чувствителен к изменению яркости, и значительно менее чувствителен к изменению цветности. Это позволяет передавать и хранить информацию о цветности с пониженной глубиной. Именно на этой особенности человеческого глаза построены самые популярные на сегодняшний день алгоритмы сжатия изображений (в т.ч. jpeg). Для перевода из пространства RGB в YIQ можно воспользоваться следующими формулами: