На лице написано: как работает компьютерное распознавание лиц. Разработчики алгоритмов распознавания лиц. Сила в интеллекте

Мировой рынок распознавания лиц вырастет с 4,05 млрд. долларов в 2017 году до 7,76 млрд. долларов США к 2022 году .




Как работает система распознавания лиц?

В принципе, система распознавания лиц может быть описана как процесс сопоставления лиц, попавших в объектив камеры с базой данных ранее сохраненных и идентифицированных изображений лиц эталонов.
По структурной реализации системы распознавания лиц можно выделить три распространенные схемы.

Анализ видеопотока на сервере

Наиболее распространенная схема реализации - IP-камера передает видеопоток на сервер, на сервере специализированное программное обеспечение для выполняет анализ видеопотока и сравнение полученных из видеопотока изображений лиц, с базой лиц эталонов.

Недостатками такой схемы будут, высокая нагрузка на сеть, высокая стоимость сервера, даже к самому мощному серверу можно подключить ограниченное количество IP-камер, т.е. чем больше система тем больше серверов.
Преимуществом является возможность использовать уже существующую систему видеонаблюдения.

Анализ видеопотока на IP-камере

В данном случае анализ изображения будет производится на самой камере, а на сервер будут передаваться обработанные метаданные.

Недостатки - нужны специальные камеры, выбор которых в данный момент крайне мал, стоимость камер выше чем обычных. Также в системах разных производителей будет по разному решаться вопрос хранения и размера базы данных распознанных лиц эталонов, а также вопросов взаимодействия софта на камере и софта на сервере.
Преимущества - подключение практически неограниченного количества камер к одному серверу

Анализ видеопотока на устройстве контроля доступа

В отличии от первых двух схем где используются IP-камеры, в данном случае камера встроена в устройство контроля доступа, которое кроме распознавания лица которое естественно происходит на устройстве, выполняет функции управления доступом как правило через турникет или электрозамок установленный на дверь. База данных лиц эталонов хранится на устройстве, и как правило уже не в виде фотоизображений.

Недостатки - как правило все такие устройства выпускаются для использования в помещениях.
Преимущества - низкая стоимость систем по сравнению с системами видеонаблюдения используемыми для распознавания лиц.

В любом случае успех реализации проектов по распознаванию лиц зависит от трех важных факторов:
Алгоритм распознавания
Базы данных распознанных лиц (эталонов)
Быстродействие алгоритма

Технология распознавания лиц

Как правило система состоит из камеры видеонаблюдения и программного обеспечения которое выполняет анализ изображений. Программное обеспечение для распознавания лиц основано на обработке изображений и вычислениях сложных математических алгоритмов, которые требуют более мощный сервер, чем обычно требуется для систем видеонаблюдения.

Нас будет в первую очередь интересовать качественные показатели программного обеспечения. Во вторую, какие серверные мощности понадобятся для анализа изображения и обработки базы данных с изображениями, ну и в третьи мы рассмотрим вопрос применимости IP-камер для целей распознавания лиц. Отдельного внимания заслуживают так называемые «stand alone» устройства, которые выполняют обработку изображений непосредственно на самом устройстве а не на сервере, также на таких устройствах может быть в память база данных лиц эталонов.


2D-распознавание лиц
В основе технологии 2D (двумерного) распознавания лиц, лежат плоские двухмерные изображения. Алгоритмы распознавания лиц используют: антропометрические параметры лица, графы - модели лиц или эластичные 2D-модели лиц, а также изображения с лицами представленные некоторым набором физических или математических признаков. Рейтинг популярности алгоритмов распознавания лиц мы рассмотрим ниже.

Распознавание 2D изображений одна из наиболее востребованных технологий на данный момент. Так как основные базы данных идентифицированных лиц накопленные в мире - именно двухмерные. И основное оборудование, уже установленное, по всему миру тоже 2D - по данным на 2016 год - 350 миллионов камер видеонаблюдения. Собственно поэтому основной спрос приходится именно на 2D системы распознавания лиц.

А спрос как известно стимулирует предложение, заставляя разработчиков максимизировать усилия на совершенствовании именно 2D технологии. Эти усилия приносят иногда неожиданно интересные результаты, например в виде создания трехмерной модели лица на основе 2D изображения. Исследователи из университетов Ноттингема и Кингстона представили проект по 3D-реконструкции лиц на основе одного одного единственного изображения. Нейросеть, через которую пропустили множество объёмных 3D-моделей людей и обычных портретов воссоздает объемные лица людей на основе всего одного двумерного изображения лица.




Преимущества
Огромным преимуществом 2D распознавания лиц является наличие готовых баз данных лиц эталонов, и готовой инфраструктуры. Максимальный спрос придется именно на этот сегмент, а спрос будет стимулировать разработчиков совершенствовать технологии.

Недостатки
Более высокие коэффициенты ошибок FAR и FRR по сравнению с 3D распознаванием лиц.


3D-распознавание лиц
3D распознавание (Three-dimensional face recognition - англ.) производится как правило по реконструированным трехмерным образам. Технология 3D распознавания лиц имеет более высокие качественные характеристики. Хотя конечно и она не является идеальной.

Существует несколько разнообразных технологиях 3D сканирования. Это могут быть лазерные сканеры с оценкой дальности от сканера до элементов поверхности объекта, специальные сканеры со структурированной подсветкой поверхности объекта и математической обработкой изгибов полос, либо это могут быть сканеры, обрабатывающие фотограмметрическим методом синхронные стереопары изображений лиц.

Одним из наиболее исследованных потребителями и экспертами 3D сканеров является знаменитый Face ID, от компании Apple. Опыт использования Face ID крайне интересен и показателен, потому что по сути это единственное устройство с технологией 3D распознавания лиц выпущенное на масс маркет, если конечно можно считать телефон за сотку устройством для масс маркета.

3D технология от Apple единственная в мире использует - вертикально-излучающие лазеры (VCSEL), по слухам суммарно потратив на разработку Face ID от 1,5 до 2 миллиардов долларов. Поставщиком VCSEL для Apple выступают две компании Finisar Corp (инвестиции Apple - 390 млн. долларов) и Lumentum Holdings . И судя по тому что другие 3D технологии, не показывают такой эффективности как Face ID, разблокировка по лицу на смартфонах на Android, появится не скоро.

Естественно с задачами идентификации близнецов Face ID не справляется, хотя этого никто и не ожидал, но даже с близкими родственниками случаются фейлы .
Ну и скорее комичный момент, но по началу Face ID не различал азиатов , но проблему настолько быстро пофиксили, что Apple даже не успели вчинить ни одного иска за расизм.

Преимущества 3D
Большая точность и меньшее количество ошибок пока недостижимое для 2D систем распознавания лиц.


Недостатки 3D
Достаточно легко подделать для профессионалов
Даже Face ID несмотря на всю крутость был взломан вьетнамской компанией Bkav сразу после поступления в продажу. Маска была создана с помощью 3D принтера. Себестоимость создания маски всего $150. Создание маски достаточно сложно для обычного человека, и ваша мама вряд ли сможет это повторить, но для профессионалов это как два пальца об асфальт.

Не используйте 3D распознавания лиц для защиты от несанкционированного доступа к ноутбукам, смартфонам, помещениям с особым уровнем секретности, все они могут быть с легкостью взломаны профессионалами.

3D распознавание требует специальных камер для сканирования, которые в несколько раз дороже обычных камер видеонаблюдения которые используется в 2D распознавании.
Отсутствие готовых баз данных идентифицированных лиц, по сравнению с 2D распознаванием
Распознавание близнецов, остается сложной задачей для алгоритмов распознавания лиц. В среднем в мире рождается 13.1 близнецов на 1000 новорожденных , и эта цифра сильно колеблется в зависимости от географического региона.

Распознавание лица по текстуре кожи лица
Изображения с высоким разрешением еще один фактор в совершенствовании технологии распознавания лиц, именно благодаря высокому разрешению стал возможен очень подробный анализ текстуры кожи.

При таком анализе определенная область кожи лица, может быть захвачена как изображение, а затем разбита на более мелкие блоки, которые превращаются в математические измеримые пространства, в которых записываются линии, поры и фактическая текстура кожи.

Технология может идентифицировать различия между близнецами, что пока невозможно использовать с помощью программного обеспечения для распознавания лиц». В случае объединения распознавание лица с анализом поверхностной текстуры, точность идентификация может сильно увеличиться.

Распознавание лица по тепловизионному изображению
Использование тепловизионных камер, для целей распознавания лиц на данный момент считается перспективным направлением для разработки, но готовых для внедрения коммерческих решений пока нет.


Технология достаточно перспективная так как позволяет нивелировать болевые точки 2D-распознавания.

Распознавания лиц в полной темноте и в условиях недостаточного освещения
Макияж, прическа, борода, шляпа, очки - не являются проблемой для тепловизионных камер
Позволяют распознавать близнецов


Можно выделить два направления, в которых ведется разработка:
Идентификация по заранее созданным термограммам идентифицированных лиц. Здесь проблемы те же что и с 3D-распознавание, готовых баз данных эталонов нет, оборудование дорогое.
Идентификация человека по изображениям полученным с тепловизионной камеры, а в качестве лиц эталонов используются база данных обычных двумерных изображений. Решается задача как вы наверное уже догадались использованием глубоких нейронных сетей.

Распознавание лиц по текстуре кожи и по тепловизионному изображению. работает, только в лаборатории, и то не идеально. Но мы внимательно наблюдаем, и если что сразу дадим вам знать.

Качество программного обеспечения

Существует несколько важных метрик для оценки качества программного обеспечения.

Наиболее важные из них FRR и FAR
False Reject Rate - FRR (Уровень ошибочных отказов) - вероятность того, что система не идентифицирует зарегистрированного пользователя или не подтверждает его подлинности.

Как рассчитывается FRR:
Пусть Nt - количество эталонов изображений в базе данных. FR - количество ложных нераспознаваний (False Reject - Иванов, не распознан как Иванов),

False Acceptance Rate - FAR (Уровень ошибочных подтверждений) - вероятность того, что система распознавания лиц ошибочно идентифицирует незарегистрированного пользователя или подтверждает его подлинность.

Как рассчитывается FAR:
Пусть Nt - количество эталонов изображений в базе данных. FA - количество ложных распознаваний (False Acceptation - Иванов распознан как Петров),

Первое и самое важное что вам нужно знать про эти два показателя, это то что они не абсолютные, а относительные, т.е. они могут меняться в зависимости от настроек алгоритма распознавания лиц.

Второе это то, что эти показатели взаимосвязаны - чем меньше FAR тем больше FRR.

Ориентировочные значения FRR и FAR для систем распознавания лиц и их взаимосвязь представлены в таблице:


Сравнение FAR и FRR различных методов биометрической идентификации:

Разработчики алгоритмов распознавания лиц

Алгоритм распознавания, это как правило не готовый программный продукт, а программный алгоритм который еще предстоит упаковать в программный продукт и в оборудование.

Производителей алгоритмов распознавания в мире достаточно много, благо есть независимые организации которые проводят тестирование эффективности алгоритмов. Самые известные: NIST - Национальный институт стандартов технологий США и MegaFace - Вашингтонский университет, Labeled Faces in the Wild , есть и другие. Результаты конкурсов постоянно обновляются. Любая компания в любой момент может обновить свой результат, заново пройдя тестирование. Еще недавно NtechLab заявила о себе как о победителе, а сегодня они лишь на 4 месте.

Мы опубликуем тестирование NIST с результатами на 13.05.2018. Так как NIST с моей точки зрения более интересен так как тестирование алгоритмов происходит на закрытой базе данных лиц, что исключает подготовку разработчика к тестированию.

  1. Алгоритм - megvii-000 от Megvii , Китай
    Китайская компания Megvii со своим основным продуктов Face++. По оценкам Коммерсанта оборот компании составил порядка $100 млн.
  2. Алгоритмы: 2 место - visionlabs-003, 7 место - visionlabs-002, VisionLabs , Россия
  3. Алгоритмы: 3 место - morpho-002, 17 место - morpho-000. OT-Morpho , Франция
    Первый тяжеловес, в рейтинге с оборотом почти 3 млрд. евро за 2017 год. Совместное предприятие Oberthur Technologies (OT) и Safran Identity & Security (Morpho)
  4. Алгоритмы: 4 место - ntechlab-003, 13 место - ntechlab-002 от NtechLab , Россия
    Московская компания, получившая известность как разработчик решения для поиска порно актеров .
    Получил инвестиции от «РТ – развитие бизнеса» («дочка» «Ростеха»), и фонда компании VB Partners. Сумма инвестиций не раскрывается. В результате «дочка» «Ростеха», получила 12,5% компании, фонд New Dimension Fund Variable Capital Investment, им управляет VB Partners, – 25% компании. NtechLab планирует выйти на рынок систем национальной безопасности и усилить развитие в коммерческом секторе.
  5. Алгоритм - cogent-000 от Gemalto Cogent , США
    Разрабатывает полный спектр биометрических решений с акцентом на правоохранительную деятельность, пограничный контроль и гражданскую идентификацию. Ежегодные глобальные продажи составляют около 205 миллионов долларов.
  6. Алгоритм - vocord-002 от Vocord , Россия
    Компания «Вокорд» основана в 1999 году выпускниками МФТИ Дмитрием Заварикиным и Алексеем Кадейшвили. По данным «СПАРК-Интерфакс», в 2014 году выручка компании составила 302 млн рублей, более свежих данных на момент написания статьи получить не удалось.
  7. Алгоритмы: - fdu-000, 9 место - fdu-001. Fudan University , Китай
  8. Алгоритм - neurotechnology-003. Neurotechnology , Литва
    С сайта компании можно скачать демо версию программного обеспечения для ПК и для смартфона на Android, демо версию SDK. У компании информативный канал на YouTube. Цены опубликованы на сайте. Так же компания предлагает собственный облачный сервис www.skybiometry.com
  9. Алгоритм - itmo-003. Университет ИТМО , Россия
  10. Алгоритм - 3divi-001. Тридиви (3DiVi Inc.) , Россия
  11. Алгоритм - yitu-000. Yitu Technologies , Китай
    Главный продукт Yitu - система распознавания лиц Dragonfly Eye, которую используют государственные системы безопасности в разных городах Китая. В первые три месяца использования системы в Шанхае с помощью Dragonfly Eye задержали 567 нарушителей закона. Система хранит 1,8 миллиарда фотографий, причём в базу попадают фото не только граждан Китая, но и всех туристов, пересекающих границу страны. Систему разворачивают и на массовых событиях: во время фестиваля пива в Циндао камеры помогли задержать 22 разыскиваемых. Власти на местах рапортуют об успехах : в одном городе система Yitu помогла сократить карманные кражи на 30%, в другом - за два года раскрыть 500 преступлений. Каким-то невероятным образом система даже помогла опознать жертву убийства по черепу спустя пять лет после преступления.
  12. Алгоритм - gorilla-000, Gorilla Technology , Тайвань
  13. Алгоритм - cyberextruder-002, CyberExtruder , США
  14. Алгоритм - tongyitrans-002, TongYi Transportation Technology , Китай
  15. Алгоритм - yisheng-001, Zhuhai Yisheng Electronics Technology , Китай

  16. Итого: 5 представителей из России, что не может не радовать, 5 от Китая, что даже не удивляет.

    На самом деле производителей алгоритмов распознавания гораздо больше, многих отсутствующих здесь вы можете найти в рейтинге MegaFace. Но если даже составить единый список, он все равно будет не полон. Почти все гиганты IT индустрии разрабатывают собственные алгоритмы распознавания лиц - Facebook, Google (считает свою систему распознавания самой точной), Baidu, Microsoft , Яндекс (тестирует авторизацию водителей по лицу и голосу), Вконтакте, Toshiba и многие другие.

    Существуют даже .

    Из всего это разнообразия, можно сделать несколько несложных выводов:

    Конкуренция на этом рынке будет усиливаться, ее следствием уже стало многократное снижение цен. Для примера - Macroscop еще в 2017 году снизил свои цены модуль распознавания в 18 раз, о чем радостно сообщают на своем же сайте, как бы передавая «большой привет» всем своим клиентам которым посчастливилось купить модуль распознавания до 2017 года.

    Очевидно что цены и дальше будут снижаться. Качественные показатели алгоритмов распознавания постоянно растут, и во многих случаях отличаются друг от друга незначительно, значительно же отличается цена, как вы сможете увидеть ниже, еще более значительно отличается быстродействие, естественно такой параметр как быстродействие нужно тестировать на базе данных максимального объема.

    Еще нетрудно заметить, что в рейтингах практически нет производителей оборудования для систем видеонаблюдения , а без видеокамер и устройств хранения, вся эта история с алгоритмами лишь игры на компьютере. Но то, что их нет, это не означает что они не видят этого рынка, и не понимают его значимость. Вот - распознавание лиц от Panasonic , от NEC , Amazon и многих других. В общем на этом рынке скоро станет очень жарко. Кроме софтверных решений (это когда непосредственно распознавание происходит на сервере), есть еще Stand Alone решения - это когда распознавание происходит на устройстве считывания.


    Программное обеспечение для распознавания лиц для систем видеонаблюдения

    Тестирование эффективности алгоритмов распознавания лиц это конечно интересно, как и любое соревнование, но больше похоже на выставку достижений народного хозяйства. Вроде впечатляет, но как конкретно начать использовать и сколько будет стоить непонятно. Результатом работы алгоритмов для распознавания лиц, будет совпадение или несовпадение с базой эталонов. А далее в зависимости от специфики вашей системы должно произойти заранее запрограммированное действие. Например при входе VIP клиента старший менеджер получает уведомление со всеми данными по клиенту из вашей базы данных.

    Или наоборот при входе человека из черного списка, уведомление получает охрана. Или при попытке прохода человека из черного списка через проходную, система контроля доступа блокирует проход - это уже интеграция системы распознавания лиц с системой контроля доступа.

    Работа системы распознавания лиц в реальных условиях это целый комплекс программно аппаратного взаимодействия. Для организации таких взаимодействий существует куча интегрированных платформ, позволяющей настраивать взаимодействия с системами контроля доступа, системами видеонаблюдения, охранными системами, системами пожарной безопасности, CRM системами, системами управления предприятием, и многими другими.

    Так если вам не шашечки, а везти, следующие пара разделов для вас просто «Must Have».
    Интеграционные платформы - громкое название, к перечисленным ниже разработчикам оно относится в разной степени, поэтому выбирая решения для распознавания лиц необходимо ознакомиться со всеми возможностями софта (платформы). Учитывая как текущие потребности предприятия, так и возможности развития, как качественные характеристики алгоритма распознавания лиц, так возможности интеграции.

    Разработчики программного обеспечения для системы распознавания лиц и цены на их модули

    ISS , Россия, Программное обеспечение «SecurOS® Face»


    Лицензия модуля захвата лиц - цена 41 275 рублей
    На канал. Устанавливается на сервере распознавания лиц или на сервере захвата лиц

    Лицензия модуля распознавания лиц (до 1000 чел. в базе) - цена 665 760 рублей.
    На сервер распознавания лиц.

    Сервера для программного обеспечения для целей распознавания лиц

    Распознавание лиц как и любая другая видеоаналитика задачи процессорно емкие, поэтому для развертывания даже небольшой системы распознавания лиц вам потребуется достаточно мощные и совсем не дешевые сервера. Характеристики сервера подбираются индивидуально и зависят от множества факторов - от количества каналов распознавания, до предполагаемого размера базы данных лиц эталонов, и длительности хранения видеоархива.

    Сервера для программного обеспечения систем распознавания лиц - цена от 101 567 рублей
    Выбор серверов не ограничивается представленными в этом каталоге, в большинстве случаев мы собираем сервер в зависимости от заявленных вами требований.


    Лучшие IP-камеры для распознавания лиц

    Программное обеспечение и сервера, мы рассмотрели выше, но чтобы система заработала, нужны IP-камеры. Именно от качественных характеристик камер будет сильно зависеть, то насколько качественно система будет работать система распознавания лиц.

    При выборе IP-камеры для распознавания лиц мы рекомендуем обращать внимание на следующие характеристики.

    WDR (Широкий динамический диапазон)
    Несмотря на то что последнее время появляются камеры с WDR за 5000 рублей, качество изображения таких камер сильно уступает камерам с из более высокого ценового сегмента. Камеры с лучшим WDR по нашему опыту не может стоить дешевле 80000 рублей.

    Частота кадров не менее 60 кадров с секунду
    Чем больше частота кадров в секунду тем больше вероятность того что вы получите снимок с наилучшей ориентацией лица человека относительно камеры, что напрямую будет влиять на качество распознавания лиц.

    Вариофокальный объектив
    Чем больше будет приходится пикселей на лицо человека, тем более будет изображение.

    Тесты показали, что для успешного распознавания лица требуется, чтобы лицо было представлено не менее 160 пикселями приходящимися на овал лица, и в идеале не менее 50 пикселей приходилось на расстояние между глазами. Как бы тщательно вы не выбирали месторасположение камеры, чтобы добиться этих значений ее придется подстраивать по месту в зависимости от множества факторов. Именно для этого вам и понадобится вариофокальный объектив.

    Камеры видеонаблюдения с установленными рекомендуемыми характеристиками для распознавания лиц - цена от 10 000 рублей

    Дальше как говорится, выбор за вами. Если вы строите систему распознавания с нуля, то стоит задуматься о выборе действительно лучших протестированных моделей IP-камер.


    Достаточно распространенный и недорогой функционал, как правило он всегда присутствует в основном программном обеспечении для распознавания лиц, но может и приобретаться отдельно. Если вы никогда в жизни не интересовались системами видеонаблюдения. Посмотрите видео там максимально коротко рассказано в чем суть.


    ITV , Россия, Программное обеспечение «Интеллект»
    Поиск лиц в архиве (за 1 видеоканал) - цена 6 200 рублей

    Trassir , Россия, Программное обеспечение «Trassir Face Search»
    Модуль поиска определенного лица в архиве Trassir Face Search - цена 36 990 рублей

    В том или ином виде данный функционал присутствует у большинства разработчиков, поэтому мы пожалуй не станем растягивать и без того ни короткую статью.


    Производители оборудования с интегрированными алгоритмами распознавания лиц

    Если раздел выше с разработчиками программного обеспечения это настоящее, т.е. именно там сосредоточены основные решения показывающее максимальную эффективность на данный момент. То этот раздел про будущее которое уже наступает.

    В первом случае видеопоток от камеры по сети передается на сервер с установленным софтом, и именно там происходит распознавание лиц, поток от одной IP-камер примерно равен 5 Мбит/с, и этот поток нужно передать по сети на сервер и там обработать. В случае с одной камерой все выглядит приемлемо, а если камер сотни - это проблема которую нужно отдельно решать. Решать ее можно в основном десятками серверов для обработки данных, любая видеоаналитика это процессорно емкая задача. Так что сервера будут немалой статьей расходов.

    Гораздо эффективнее произвести распознавание на борту устройства , а по сети передать уже обработанные результаты, что уменьшит нагрузку на сети и сервера на порядки.

    Кроме того что такие устройства уже есть, они уже показывают потрясающую эффективность и быстродействие. Все оборудование я бы поделил на две большие группы «Камеры видеонаблюдения со встроенным распознаванием лиц» и «Оборудование для систем контроля доступа со встроенным распознаванием лиц».

    Камеры видеонаблюдения со встроенным распознаванием лиц

    Умные камеры со встроенными алгоритмами распознавания лиц являются одним из самых передовых в отрасли. Они позволяют обрабатывать видеопоток на непосредственно на самой камере, а на сервер отправлять обработанные метаданные. 2Мп камера iDS-2CD8426G0/F-I c двумя объективами - цена 135 550 рублей

    HikVision , Китай, крупнейший китайский производитель систем видеонаблюдения.
    Матрица - 1/2.8’’ Progressive Scan CMOS
    Чувствительность - Цвет: 0.005 лк @ (F1.2, AGC ВКЛ), 0.0089 лк @ (F1.6, AGC ВКЛ), 0 лк с ИК
    Скорость электронного затвора - 1с ~ 1/100000с
    Разрешение 2МпАппаратный WDR 120дБ, частота кадров 25к/с@2Мп, слот для microSD до 128Гб, ИК-подсветка до 10м

    Камера для распознавания лица, с двумя объективами, представляет собой компактное устройство с алгоритмами глубокого обучения DeepinViewс системой распознавания лиц на борту.

    Камера поддерживает несколько кодеков сжатия видео (H.265, H.264, MPEG-4 и MJPEG) и может обрабатывать до пяти видеопотоков. Размер видеокамеры - 180,4 х 147 х 117,9 мм, вес устройства - 1500 грамм. Конструктивно представляет собой двухлинзовую камеру с бинокулярной стереофонической технологией, которая считывает большое количество характеристик лица для более точного распознавания.

    Она оснащена объективом с фиксированным фокусным расстоянием 4 мм, угол обзора равен 86°. Камера автоматически захватывает выбирает и выводит оптимальное изображение лица человека.

    Выполняет распознавание лиц, мгновенное сравнение захваченных лиц с библиотеками на борту, поддерживается настройка активации тревоги по идентифицированному лицу.

    HikVision заявляет о рабочих температурах в диапазоне от -10 °C до 40 °C и уровне влажности до 95 процентов.

    Камера автоматически переключается между режимами дневной и ночной съемки. Инфракрасная подсветка действует на расстояние до 10 метров.

    Видеорегистратор iDS-96128NXI-I16 с системой распознавания лиц - цена 3 299 990 рублей

    Запись видео с разрешением до 12Мп, Вывод видео с разрешением до 4K
    128 каналов, Синхронное воспроизведение 4 канала@4К
    16 SATA HDD до 10ТБ каждый
    1/2 аудио вход/выходов, 16/8 тревожных входов/выходов
    Сетевой интерфейс 4 RJ-45 10M/100M/1000M Ethernet

    Память видеорегистратора рассчитана на 16 библиотек снимков людей (всего до 100 000 фото)

    Видеорегистратор поддерживает Smart-функции по поиску похожих людей, анализу поведения, обнаружения лиц и автомобилей.
    Есть возможность работы с тепловизорами, обнаружение огня, морских судов, измерение температуры, ведение статистики камер тепловых карт и подсчета посетителей.
    iDS-96128NXI-I16 способен обнаруживать людей на 32 каналах, и моделировать лица со скоростью 64 фото в секунду.

    Регистратор имеет интерфейсы 1 RS-232, 1 RS-485, RS-485 для клавиатуры, и по два разъема USB 2.0 и USB 3.0, а так же 16 тревожных входов и 8 выходов.

    IDS-96128NXI-I16 поддерживает использование рейд-массивов RAID0, RAID1, RAID5, RAID6 и RAID10.

    Камера видеонаблюдения DH-IPC-HF8242F-FR с системой распознавания лиц на борту - цена 100 000 рублей
    Dahua Technology , Китай
    1/1.9", 2 Мп progressive scan CMOSSmart кодек 265+/H.264+, кодирование в 3х потоках
    Starlight, true WDR 120дБ, 3DNR, День/ночь (ICR), AWB, AGC, BLC
    Множественный мониторинг сети: веб-просмотрщик, CMS (DSS / PSS) & DMSS
    Автоматическая задняя фокусировка (ABF)

    Face capture - это программное приложение, которое автоматически захватывает лица из цифрового изображения или видеофрагмента из видеоисточника. Камеры Dahua используют усовершенствованные алгоритмы Deep Learning, что позволяет камере быстро и точно распознавать и сопоставлять лица.

    Видеокамера для распознавания лиц DH-IPC-HF8242FP-FR использует технологию Deep Learning, что позволяет эффективно распознавать и сопоставлять лица. Аналитические функции устройства позволяют определять возраст, пол, настроение, наличие или отсутствие маски/очков/бороды или усов.

    Видеокамера обладает функцией подсчета людей и генерирует тепловую карту.
    Память камеры вмещает до 10 000 лиц, которые могут быть разделены на 5 категорий, что позволяет обеспечить захват и сравнение лиц в реальном времени.

    Благодаря Starlight технологии от компании Dahua, камера идеально подходит для работы в сложных условиях c ограниченным освещением.
    Ее низкая светочувствительность обеспечивает производительность цветной картинки с минимальным окружающим освещением. Даже в экстремальных условиях низкой освещенности, практически в полной темноте, Starlight технология способна отобразить цветное изображение.

    Камера видеонаблюдения IPC2255-Gi4N с системой распознавания лиц на борту - цена 100 000 рублей

    Kedacom, Китай
    1/1.9" КМОП Starlight матрица, 0.001 лк при цветном изображении 1080@30 к/с в H.265 / H.264 / MJPEG
    Распознавание до 18 целей одновременно (образ, лицо)
    Аппартный WDR, Адаптированная ИК-подсветка до 100м
    2 тревожных входа / 1 выход, Класс защиты IP66, Диапазон температур -40°C +60°C

    Видеокамера Axis P1367 со встроенным алгоритмом Ayonix - цена 68 448 рублей

    Ayonix, Япония
    Матрица 1/2,9” с прогрессивной разверткой
    Переменное фокусное расстояние 2,8–8,5 мм
    Превосходное качество видеоизображения с разрешением 5 Мп
    Технологии Lightfinder и Forensic WDR, Технология Zipstream
    Расширенные возможности для анализа изображений

    Японский разработчик программного обеспечения для распознавания лиц Ayonix, разработала программное обеспечение для работы на борту камеры Axis P1367.

    Благодаря платформе ACAP, сторонние разработчики могут разрабатывать приложения для установки их непосредственно на камеры Axis.

    Терминалы для систем учета рабочего времени со встроенным распознаванием лиц

    Терминал учета рабочего времени FacePass Pro - цена 23 000 рублей

    Anviz , Китай
    Объем памяти на 400 пользователей
    Время идентификации < 0,1 сек
    Расстояние для идентификации пользователя: от 30 см. до 80 см
    Процент распознавания: > 99%
    Чувствительный 2,8” сенсорный TFT дисплей
    Встроенный Web Server для удобства настройки терминала

    Две сканирующие камеры обеспечивают максимально точную идентификацию, а высокоскоростной процессор Samsung ARM сводит к минимуму время распознавания лиц сотрудников

    На точность и скорость идентификации не влияют даже такие факторы, как: цвет кожи, выражение лица, пол, прическа, а так же наличие или отсутствие на лице растительности.

    Anviz FacePass Pro - система учета рабочего времени сотрудников с распознаванием по лицу, бесконтактным RFID картам или паролю.

    Сочетание нового алгоритма BioNANO с высокопроизводительной аппаратной частью, гарантирует идентификацию пользователей менее чем за 0,1 (!) секунды.

    Уникальная инфракрасная подсветка, обеспечивает стабильную работу устройства как в помещениях с меняющейся освещенностью, так и в полной темноте.
    На скорость и качество идентификации не влияют даже такие факторы, как: цвет кожи, выражение лица, пол, прическа, а так же наличие или отсутствие на лице бороды или усов.

    Динамическая цифровая клавиатура и чувствительный 2,8” сенсорный TFT дисплей гарантируют комфортную эксплуатацию.

    Мультибиометрический терминал учёта рабочего времени ZKTeco Pface202-ID - цена 26 500 рублей

    ZKTeco, Китай

    Память на 600 шаблонов вен ладони, 1200 лиц (до 3000 при верификации 1:1), 2000 пальцев и 10000 карт
    Емкость журнала 100000 на событий
    Сенсорный ЖК дисплей 4.3’’
    Встроенный считыватель карт Em-Marin

    Сетевой биометрический терминал для систем учета рабочего времени и контроля доступа с идентификацией по лицам, венам ладони, отпечаткам пальцев, считывателем RFID-карт и подключением по ethernet.

    Мультибиометрический терминал учёта рабочего времени ZKTeco uFace302-ID - цена 27 405 рублей

    Память рассчитана на 1 200 шаблонов лиц, 2 000 отпечатков пальцев и 10 000 карт
    Журнал событий на 100 000 записей
    Высокая скорость распознавания
    Интерфейсы TCP/IP, RS232/485, USB Host, Wiegand выход
    Выходы для подключения элеткрозамка, датчика состояния двери, кнопки выхода, тревожный выход
    Использование аппаратного шифрования для защиты прошивки

    Биометрический терминал для учёта рабочего времени и контроля доступа UFace302-ID осуществляет идентификацию по лицу, отпечатку пальца, карте и коду. Face302-ID способен отличить лицо реального человека от фотоизображения. Продвинутый и дружелюбный пользовательский интерфейс обеспечивает 4-дюймовый сенсорный дисплей (Touch Screen).

    Биометрический терминал учёта рабочего времени ZKTeco uFace800 - цена 27 405 рублей

    Встроенная двойная камера высокого разрешения для сканирования лиц с инфракрасной подсветкой
    Память до 3000 лиц, 5000 пальцев, 10000 карт и 100000 событий
    Платформа ZMM220_TFT, алгоритмы ZK Face 7.0, ZK Finger 10.0
    6 статусов событий при регистрации
    Сканер отпечатков пальцев, Встроенный считыватель карт
    Интерфейсы TCP/IP, USB Host, WiFi (optional), Wiegand выход

    Сетевой биометрический терминал для систем учета рабочего времени и контроля доступа с идентификацией по лицам, сканером отпечатков пальцев, считывателем RFID-карт и подключением по ethernet.
    uFace800 поддерживает управление замком, контроль датчика двери, звонок, датчик взлома, подключение кнопки выхода.

    Оборудование для систем контроля доступа со встроенным распознаванием лиц

    Терминал распознавания лиц FaceStation 2 - цена 80 856 рублей

    Suprema , Корея. Крупнейший мировой производитель биометрии, входит в топ 50 крупнейших мировых производителей систем безопасности.
    Микропроцессорная система: 1.4 GHz Quard Core, Память: 8 GB Flash + 1 GB RAM
    Автономная память на 30 000 пользователей, 5 000 000 событий, 50 000 фото
    Быстрая идентификация – сравнение 1:3 000 шаблонов в секунду
    Сенсорный дисплей 4" LCD Touchscreen, Подсветка до 25000 лк
    Стабильная работа при любом освещении благодаря подсветке 25 000 лк

    FaceStation 2 - высокопроизводительная платформа для распознавания лиц. Распознавание лиц может быть использовано как в режиме идентификации так и в режиме верификации. Кроме идентификации по лицу, поддерживается идентификация по смартфону и бесконтактным картам.

    Для решения конкретных задач СКУД на реальном объекте пользователь может подобрать различные режимы идентификации (1:N) или верификации (1:1) из широкого перечня, предлагаемого FaceStation 2.
    Таким образом, появляется возможность выбрать оптимальное соотношение уровня безопасности и скорости работы в каждом конкретном случае.

    В зависимости от выбранного режима в работе будут задействованы различные сочетания биометрических сенсоров, встроенного считывателя Smart карт и сенсорной клавиатуры для ввода PIN кода.
    Бесконтактная идентификация по лицу и возможность использования смартфона вместо карты доступа делает FaceStation 2 исключительно удобным для пользователей.

    Терминал распознавания лиц высокой производительности, со встроенным мультичастотным считывателем карт (125kHz EM & 13.56Mhz MIFARE, DESFire/EV1, FeliCa, NFC, ISO14443A/B, ISO15693).

    Благодаря расширенной области распознавания, установленное согласно инструкции устройство «видит» лица людей ростом от 145 см до 210 см.
    Терминал оснащен расширенным функциями безопасности, такими как инфракрасная технология блокировки поддельных лиц и многополосная технология RF-считывания, поддерживающая новейшие стандарты RFID.

    Так же имеется модификация терминала FaceStation 2 (модель FS2-AWB) - цена 93 850 рублей , отличающаяся встроенным считывателем MultiCLASS SE (125kHz EM, HID Prox & 13.56Mhz MIFARE, DESFire/EV1, FeliCa, iCLASS SE/SR, NFC, ISO14443A/B, ISO15693).

    Ну и конечно решения от наших китайских партнеров, которые не были бы китайскими партнерами, если бы не предлагали современные технологии в 3-4 раза дешевле. Дешевизна безусловно не достигается без последствий, одно из основных отличий это размер базы данных, который у китайцев меньше раз в 5 минимум, ну и скорость и точность тоже немного страдают. Но в принципе это вполне рабочие, локальные решения для малых предприятий.

    Устройство мультифакторной биометрической идентификации ZKTeco VF680 - цена 13 410 рублей

    ZKTeco® , Китай, крупнейший китайский производитель биометрических, самостоятельно разрабатывает алгоритмы распознавания.
    Платформа ZEM810, алгоритм ZK Face 7.0
    Встроенная двойная камера высокого разрешения для сканирования лиц с инфракрасной подсветкой
    Память на 800 лиц, до 10 000 и 100 000 событий
    Скорость верификации не более 1 секунды
    Подключение по TCP/IP

    VF680 может работать автономно или подключаться к сетевым системам контроля доступа. Терминал оснащен платформой ZEM810, сенсорным экраном 3.0 дюймов и алгоритмом ZK Face 7.0, поддерживающим 800 лиц.
    Считыватель может программироваться с встроенной клавиатуры или с помощью программного обеспечения.

    Устройство мультифакторной биометрической идентификации ZKTeco MultiBio700id - цена 28 530 рублей

    Версия алгоритма: ZK Face v7.0 и ZK Finger v10.0


    100 000 событий в журнале
    Распознавание не более 1 секунды

    Мульти биометрический терминал ZKTeco Multibio700 осуществляет доступ по лицу, отпечатку пальца, бесконтактной карте и коду.
    Устройство захватывает относительную позицию, размер, и форму глаз, носа, скул, челюстей и формирует из этих данных биометрический шаблон для последующего сравнения.
    Распознавание пользователя проходит точно и быстро в пределах 1 секунды. Инфракрасная подсветка помогает удачно проводить идентификацию в условиях недостаточной освещенности.

    Для прямого управления замком терминал может использоваться автономно, или подключаться в роли считывателя в сетевые системы доступа с использованием Wiegand интерфейса.

    Биометрический считыватель ZKTeco SpeedFace V5

    Процессор Quad-Core A17 1.8Ghz, Память 2G RAM / 16G ROM
    Двойная камера: IR камера + Visible Light камера
    Работа при освещении 0~40,000Lux
    5 дюймовый сенсорный экран
    Память на 6 000 ~ 10 000 (1:N) лиц
    Скорость верификации менее 1 секунды
    Считыватель поддерживает распознавание по лицу, отпечатку пальца и RFID картам EM-Marine или Mifare.

    Распознавание лиц Visible light в разы превосходит распознавание лиц IR и дистанция распознавания увеличена до 2 метров, что значительно упрощает ситуацию в час-пик. Нет необходимости долго стоять перед камерой устройства. Пользователь может быстро пройти в нужном направлении рядом с устройством, чтобы лицо попало в поле видимости камеры.

    Благодаря использованию CNN и созданию 3D модели лица стало возможным распознавания с разных углов обзора. С применением интеллектуального алгоритма CNN, функция анти-спуффинга эффективно предотвращает проход по маскам, фото и видео.

    Биометрический терминал доступа HikVision DS-K1T606M - цена 49 990 рублей

    HikVision , Китай
    Память на 3 000 шаблонов лиц, 5 000 карт формата Mifare и 100 000 событий в журнале
    2 тревожных входа и 1 выход
    Интерфейсы связи TCP/IP; Wi-Fi; EHome протокол; RS-485; Wiegand 26/34
    Рабочие условия от -20 °C до +50 °C , влажность 10% - 90%
    Подходит для уличной установки

    Считыватель со встроенным контроллером и алгоритмом распознавания лиц ST-FR040EM - цена 26 824 рублей
    Smartec , Россия, зонтичный российский бренд, размещает заказы на куче китайских фабриках и продает в России под единым брендом Smartec.
    Версия алгоритма: ZK Face v7.0 и ZK Finger v10.0
    Инфракрасная камера высокого разрешения, Сенсорный дисплей 3 дюйма
    Объем памяти на 400 шаблонов лиц, 2000 отпечатков пальцев и 1000 бесконтактных карт
    Распознавание не более 1 секунды
    Встроенный RFID ридер Em-Marine 125kHz

    Если вам показалось что он похож на ZKTeco MultiBio700ID , то вы правы для Smartec этот считыватель производит ZKTeco, и это полная копия MultiBio700ID.

    Домофон со встроенной системой распознавания лиц DS06M - цена 14 300 рублей

    Бевард , Россия
    1,3 Мп сенсор SONY Exmor, с чувствительностью 0.01Лк
    Эксплуатация в диапазоне температур от -40 до +50°С, класс защиты IP54
    Установленная карта microSDHC на 4 ГБ, запись на карту памяти
    Двухсторонняя аудиосвязь
    Поддержка облачного сервиса Camdrive

    Не спешите радоваться низкой цене, база данных максимум на 30 лиц. Но если у вас небольшое предприятие и вы хотите произвести ВАУ эффект на ваших посетителей - это то, что может подойти.

    К слову, системой распознавания лиц, может быть оборудован любой IP домофон , желательно с нормальной IP камерой.
    И даже больше, IP домофон устанавливается именно на уровне лица или чуть ниже, что идеально подходит для качественного распознавания лиц.

    Тот же домофон Бевард, но подключенный к системе распознавания лиц Макроскоп, в данном случае программное обеспечение Макроскоп устанавливается на сервер . В такой конфигурации размер базы данных ограничен только, простите, вашими финансовыми возможностями.

    Очки с системой распознавания лиц уже использует полиция города Чжэнчжоу

    LLVision Technology , Китай

    Подключенные к базе данных полиции, очки выдают имя и адрес человека за 2-3 минуты. За полторы недели с помощью очков на железнодорожном вокзале в Чжэнчжоу было задержано семь человек числящихся в розыске, и 26 с поддельными ID-картами .

    Кроме хакеров, есть еще вездесущий товарищ майор, который к биометрическим данным проявляет не меньший интерес. WikiLeaks опубликовала сообщение (url предусмотрительно заблокирована РосКомНадзором) о возможной краже базы данных Aadhaar ЦРУ, с помощью оборудования которое используется для сканирования отпечатков пальцев и радужной оболочки глаза от компании Cross Match (Запомните эту американскую компанию она до сих пор активно продвигает свое оборудование, в том числе на международных рынках)

    Естественно Aadhaar сам предоставляет доступ коммерческим компаниям, например компания Microsoft использует Aadhaar для подтверждения личности пользователей специальной версии Skype для Индии.

    В предоставлении доступа коммерческим компаниям к государственным базам биометрических данных есть большой смысл. Как правило сами биометрические данные не передаются, передаются лишь результат идентификации. Кроме того что эти услуги платные, именно на эти поступления создаются и обслуживаются государственные биметрические базы данных.

    Свой Aadhaar появился и в России, очевидно что российская базе данных вряд ли удастся избежать, всех тех проблем через которые прошла Aadhaar.

    Доступ к российской базе данных планируется предоставлять банкам.

    Есть и примеры другого подхода, Бельгия первая страна запретившая использование систем распознавания лиц коммерческими организациями.

    Базы данных при надлежащие коммерческим компаниям
    Государство даже обладая монополией на принудительный сбор данных, как правило не является самым эффективным их собирателем.

    Поэтому мы имеем гигантское количество коммерческих баз данных биометрической информации. Крупнейшие - База данных Вконтакте (более 97 000 000 человек ежемесячно пользуются ВКонтакте), именно ей например пользуется NtechLab для своего сайта FindFace , также большой базой данных обладает Facebook и другие социальные сети и сайты знакомств.

    Коммерческие базы данных для того и создаются что за скромные деньги их могли использовать другие коммерческие компании.

    Например Битрикс24 в своих продуктах Face-трекер, Face-карт для 1С, Bitrix24.Time и визит-трекер использует базу данных вконтакте.

    Лучшая база данных
    У всех выше перечисленных баз данных, есть один существенный недостаток, они не имеют никакого отношения к вашему бизнесу. И содержат лишь определенные наборы данных, зачастую крайне полезные наборы, но без учета специфики вашего бизнеса, применение их сильно ограничено.

    Одним из самых важных показателей качества вашей базы данных - будет качество изображений лица, эталонов.
    Самые важные показатели качества базы данных эталонных изображений:
    Количество пикселей
    Контраст и прорисовка деталей лица
    Фон, на котором находится основная часть лица
    Отсутствие мешающих деталей на области лица и т. д.

    Важно при этом еще и соблюдать более или менее одинаковые условия получения образов лиц (освещенность, размер самого лица на фоне всего образа).

    Эти показатели важно учесть еще на этапе проектирования системы в целом, отдельно уделяя большое внимание системе получения распознанных лиц эталонов.
    Начните создавать вашу базу данных уже сегодня!

    Использование биометрических баз данных
    Многие проявляют разумные опасения как по использованию биометрических данных государством так и еще большие опасения по поводу использования этих данных коммерческими структурами.

    И действительно эти опасения не лишены смысла, но они не должны останавливать внедрение технологии. В нашем недалеком будущем именно наша биологическая идентичность позволит отличить человека от искусственного интеллекта .

    Скрин с данными о количестве ботов и реальных людей посещающих веб сайты, исследование проведено компанией Imperva Incapsula


    Даже на данный момент количество ботов и реальных людей посещающих сайты примерно одинаково. С развитием интернета вещей и искусственного интеллекта количество ботов будет расти в математической прогрессии как и их возможности, уже существуют решения способные позвонить от вашего имени например в парикмахерскую или пиццерию.

    Области применения систем распознавания лиц

    Специфика применения технологии распознавания лиц отличается разной критичностью к ошибкам в зависимости от сферы применения.

    Системы контроля доступа

    Одно из наилучших применений систем распознавания лиц на данный момент именно в системах контроля доступа. Во первых сотрудник сам заинтересован в предоставлении ему доступа и не будет сознательно саботировать работу системы распознавания лиц. Во вторых вы контролируете, все внешние факторы влияющие на качество распознавания - освещение, фон, схема движения сотрудников. Использую все это вы можете создать идеальные условия.


    Системы распознавания лиц могут использоваться в системах контроля доступа в двух режимах:

    Режим идентификации - решение о допуске принимается на основе только данных от системы распознавания лиц. То есть, например база данных из ваших сотрудников 100 человек, и задача системы распознавания сравнить лицо текущего человека с базой данных в 100 человек. То есть сравнение происходит 100:1. Если человек будет идентифицирован как сотрудник, то ему будет предоставлен доступ.

    Терминалы распознавания лиц от HikVision

    Данный режим, эффективнее всего использовать в задачах обнаружения посторонних на контролируемой территории. Как правило есть смысл использовать в особо охраняемых зонах предприятия, куда доступ разрешен ограниченному кругу лиц. К системе распознавания подключаются все камеры установленные на данной территории в случае обнаружения любого лица, которое не содержится в базе данных происходит информирование службы безопасности.

    Режим верификации - идентификация в данном случае проводится с помощью другой технологии, например RFID (если вы консерватор), или может использоваться мобильные идентификаторы, или отпечатки пальца или венозный рисунок руки или пальца , если вы сечете куда ветер дует в современных тенденциях СКУД, и не хотите выкидывать деньги на ветер.
    Человек подносит карту к считывателю система его идентифицирует, то есть устанавливает что это Иванов, и Иванову разрешен доступ в данное время. Система распознавания лиц в данном случае уже знает, что это Иванов, и используя только фото Иванова из базы данных сравнивает, предъявителя RFID карты с фотографией Иванова в базе данных. То есть сравнение происходит 1:1.

    В режиме верификации работает вообще идеально, так как задача верификации очень простая даже для средних по качеству систем распознавания лиц.

    Данный режим целесообразно использовать на любых проходных - бизнес центры, производственные предприятия, институты, школы.

    Задача системы распознавания лиц - верифицировать держателя карты. Обычно эту задачу выполняет охранник или вахтер . И это не лучшая идея, если только вы не фольклорист, и не преследуете цели составить «энциклопедию современной культуры»


    У охранника на мониторе отображается фото человека при поднесении бесконтактной карты к считывателю, задача охранника сравнить фото и предъявителя карты (по науке это называется верификация). Охранником выполняется эта работа плохо - как и любая другая однообразная, рутинная, повторяющаяся работа.

    Система распознавания лиц не только гораздо эффективней выполнит эту работу, но и еще предотвратить злоупотребления со стороны охраны.

    Распознавание лиц в транспорте

    В транспорте распознавание лиц может применяться для нескольких целей:

    Поиск пропавших людей
    Поиск преступников находящихся в розыске
    Извлечение демографической информации людей для лучшего обслуживания
    Измерение удовлетворенности людей от их лиц
    Подсчет количества пассажиров, использующих общественный транспорт

    Данные о количестве пассажиров поступающие в режиме онлайн помогут быстрее, более гибко и эффективно управлять сетями общественного городского транспорта.

    Также подсчет количества пассажиров при сопоставлении этих данных с количеством оплат, позволит устанавливать нарушения правил оплаты проезда.

    Идентификация по лицу для целей оплаты проезда

    Распознавание лица для целей оплаты проезда может на данный момент вестись в режиме верификации, и позволит избегать несанкционированного использования многоразовых проездных билетов, например использованию одного проездного абонемента несколькими лицами.

    Использование распознанного лица как единственного идентификатора пассажира для автоматизированной оплаты проезда, на данном уровне развития технологий представляется возможным только в небольших корпоративных транспортных сетях, и никак не подойдет для массового общественного городского транспорта.

    Учет рабочего времени

    Еще недавно учет рабочего времени без использования преграждающих устройств, было недостижимой мечтой. Сегодня это реальность.
    Учет рабочего времени это конечно одна из функций системы контроля доступа, но учет рабочего времени может вестись и отдельно, только с помощью систем распознавания лиц.

    Одно из основных преимуществ, использования систем распознавания лиц для учета отработанного времени - это отсутствие требований к чистоте лица. В пределах разумного конечно - смотрите раздел «Саботаж».

    Также преимуществами учета рабочего времени с помощью системы распознавания лиц будут:

    Отсутствие преграждающих устройств, что конечно повышает комфортность
    Возможность использовать учет рабочего времени скрытно, без информирования сотрудников

    Учет рабочего времени всего лишь одна из метрик, и вообщем то сама по себе в отрыве от других данных по работе предприятия, мало, что говорящая. Но обладая всем объемом знаний она отлично встраивается в анализ эффективности работы компании.

    Особенно внимательно стоит следить за посещаемости в кризис, на это нам сам PricewaterhouseCoopers прямо указывает . Не будете следить за посещаемостью получите 2 дополнительных дня отсутствия на работе, о которых вы не узнаете, но которые вы оплатите. Что в 1,3 раза увеличит ваши финансовые потери от отсутствия сотрудников на рабочем месте.

    Распознавание лиц для целей учета рабочего может быть реализовано в двух видах.

    Сервер + софт + хорошие IP-камеры и все это за много денег. Царский вариант - когда учет рабочего времени может вестись без информирования сотрудников.

    Специализированные терминалы - это тот вариант когда сотруднику нужно подойти к терминалу, тем самым пройдя процедуру идентификации. Это работает только если вы объявили о том, что любому, кто не отметится в устройстве распознавания лиц - рабочий день оплачен не будет. Это простая административная мера как по волшебству сокращает количество ошибок FAR и FRR до абсолютного нуля.

    Распознавание лиц в толпе

    Говоря о системе распознавания лиц, как правило наше воображение рисует именно сценарии идентификации преступников на улицах города. Эта самая желанная самая востребованная, и самая сложная на данный момент задача.

    Поиск пропавших людей в Китае с помощью системы распознавания лиц

    Сложности
    Неравномерное освещение (день, ночь, светящее солнце, все это разные условия которые будут сильно влиять на процент распознавания лиц)
    Большое количество людей в кадре

    Плюсы
    Эффект неожиданности
    Распознавание лиц хоть и перспективная технология о которой очень много пишут, но пишут в специализированных «гиковских» изданиях. Следовательно количество людей которые вкурсе - микроскопическое, в масштабе общего количество населения. Большинство преступников просто не будут совершать действия препятствующие идентификации.

    Сеть покрытия
    Камер видеонаблюдения в большинстве больших городов очень много. Именно этот аспект будет вносить свою коррективу в работу системы распознавания лиц. Например в Великобритании человек за день попадает в объектив видеокамеры около 300 раз. И это не рекорд, и не предел при текущей низкой стоимости IP-камер.

    Определение возраста

    От задач безопасности переходим к задачам маркетинга. Когда говорят об присоединении отрасли «Систем безопасности» к большой отрасли IT имеют ввиду именно это - с помощью оборудования которое раньше считалось способным решать только проблемы безопасности. Сегодня решаю гигантский спектр разных задач, не имеющих отношения к «Системам безопасности» как таковым.

    Возрастной состав посетителей бесценная информация для любого маркетолога, и если верить нашему министру здравоохранения, которая заявила , что средняя продолжительность жизни может вырасти до 120 лет, правда госпожа Скворцова не уточнила в какой стране это произойдет, что очевидно выдает в ней умного человека. (я лично верю, что в России), так или иначе актуальность задачи определения возраста точно будет возрастать.

    Онлайн сервисы для определения возраста
    Насколько точным будет определение возраста, вы можете протестировать на нескольких онлайн сервисах. Загружайте свои фото и тестируйте.

    Для целей определения возраста вам подойдет:

    Программное обеспечение для распознавания лиц www.axis.com/products/axis-demographic-identifier/

    Определение пола

    Если вы не собираетесь анализировать пол участников Евровидения, для современных систем распознавания лиц это достаточно простая задача.

    Не нужно быть великим маркетологом, чтобы понимать, что разный гендерный состав ваших покупателей требует разной маркетинговой, рекламной, PR и любых других стратегий связанных с взаимодействием с клиентами.

    Сети кинотеатров «Синема парк» и «Формула кино» уже запустили сбор возраста и пола своих посетителей.

    Насколько точным будет определение пола вы можете протестировать по уже знакомым вам онлайн сервисам. Загружайте свои фото и тестируйте.

    www.skybiometry.com/demo/face-detect/
    www.how-old.net

    Для целей определения возраста вы можете использовать:
    Программное обеспечение для распознавания лиц, во многих случаях это одна из его функций.

    Готовые решения от Axis, HikVision - Смарт видеорегистратор + IP-камеры

    Швеция
    AXIS Demographic Identifier
    https://www.axis.com/products/axis-demographic-identifier/


    Подсчет уникальных посетителей

    Классическую задачу подсчета количества посетителей, всегда решали инфракрасными или лазерными датчиками, которые просто показывают количество пересечений виртуальной линии. Например тележка будет давать отдельное пересечение, пользы от них, как от показателя средней температуры по больнице .

    Есть современные комплексы видеоаналитики, как правило совмещенные с дополнительными датчиками. Они уже умеют считать конкретно людей, но вас же охранник, или местный городской сумасшедший, 50 раз прошедший туда - обратно, может свести данные практически к полной бесполезности.

    Впервые, благодаря современным системам распознавания лиц маркетологи могут получать по настоящему полезные данные - количество уникальных посетителей . А в купе с показателями пола и возраста - это Яндекс метрика для вашего магазина.

    Trassir Face Analytics модуль анализа лиц - цена 36 990 рублей
    Интеллектуальный модуль анализа лиц. Функционал:
    1. подсчёт уникальных лиц
    2. демографический анализ лиц (пол, возраст)
    3. идентификация расы
    4. распознавание атрибутов лица (очки, головной убор, усы, цвет волос). Стоимость за обработку 1 видеоканала.

    Скоро в нашем блоге выйдет статья с обзором современный систем видеаналитики для магазинов, это будет бомба, подписывайтесь чтобы не пропустить - мы доступны на всех платформах -

Первым шагом на нашем конвейере является обнаружение лиц . Совершенно очевидно, что необходимо выделить все лица на фотографии, прежде чем пытаться распознавать их!

Если вы использовали в последние 10 лет какую-либо фотографию, то вы, вероятно, видели, как действует обнаружение лиц:

Обнаружение лиц - великое дело для фотокамер. Если камера может автоматически обнаруживать лица, то можно быть уверенным, что все лица окажутся в фокусе, прежде чем будет сделан снимок. Но мы будем использовать это для другой цели - нахождение областей изображения, которые надо передать на следующий этап нашего конвейера.

Обнаружение лица стало господствующей тенденцией в начале 2000-х годов, когда Пол Виола и Майкл Джонс изобрели способ обнаруживать лица , который был достаточно быстрым, чтобы работать на дешёвых камерах. Однако сейчас существуют намного более надёжные решения. Мы собираемся использовать метод, открытый в 2005 году , - гистограмма направленных градиентов (коротко, HOG ).

Для обнаружения лиц на изображении мы сделаем наше изображение чёрно-белым, т.к. данные о цвете не нужны для обнаружения лиц:

Затем мы рассмотрим каждый отдельный пиксель на нашем изображении последовательно. Для каждого отдельного пикселя следует рассмотреть его непосредственное окружение:

Нашей целью является выделить, насколько тёмным является текущий пиксель по сравнению с пикселями, прямо примыкающими к нему. Затем проведём стрелку, показывающую направление, в котором изображение становится темнее:


При рассмотрении этого одного пикселя и его ближайших соседей видно, что изображение темнеет вверх вправо.

Если повторить этот процесс для каждого отдельного пикселя на изображении, то, в конечном итоге, каждый пиксель будет заменён стрелкой. Эти стрелки называют градиентом , и они показывают поток от света к темноте по всему изображению:

Может показаться, что результатом является нечто случайное, но есть очень хорошая причина для замены пикселей градиентами. Когда мы анализируем пиксели непосредственно, то у тёмных и светлых изображений одного и того же человека будут сильно различающиеся значения интенсивности пикселей. Но если рассматривать только направление изменения яркости, то как тёмное, так и светлое изображения будут иметь совершенно одинаковое представление. Это значительно облегчает решение проблемы!

Но сохранение градиента для каждого отдельного пикселя даёт нам способ, несущий слишком много подробностей. Мы, в конечном счёте, не видим леса из-за деревьев . Было бы лучше, если бы мы могли просто видеть основной поток светлого/тёмного на более высоком уровне, рассматривая таким образом базовую структуру изображения.

Для этого разбиваем изображение на небольшие квадраты 16х16 пикселей в каждом. В каждом квадрате следует подсчитать, сколько градиентных стрелок показывает в каждом главном направлении (т.е. сколько стрелок направлено вверх, вверх-вправо, вправо и т.д.). Затем рассматриваемый квадрат на изображении заменяют стрелкой с направлением, преобладающим в этом квадрате.

В конечном результате мы превращаем исходное изображение в очень простое представление, которое показывает базовую структуру лица в простой форме:


Исходное изображение преобразовано в HOG-представление, демонстрирующее основные характеристики изображения независимо от его яркости.

Чтобы обнаружить лица на этом HOG-изображении, всё, что требуется от нас, это найти такой участок изображения, который наиболее похож на известную HOG-структуру, полученную из группы лиц, использованной для обучения:

Используя этот метод, можно легко находить лица на любом изображении:

Если есть желание выполнить этот этап самостоятельно, используя Python и dlib, то имеется программа , показывающая, как создавать и просматривать HOG-представления изображений.

Шаг 2. Расположение и отображение лиц

Итак, мы выделили лица на нашем изображении. Но теперь появляется проблема: одно и то же лицо, рассматриваемое с разных направлений, выглядит для компьютера совершенно по-разному:


Люди могут легко увидеть, что оба изображения относятся к актёру Уиллу Ферреллу, но компьютеры будут рассматривать их как лица двух разных людей.

Чтобы учесть это, попробуем преобразовывать каждое изображение так, чтобы глаза и губы всегда находились на одном и том же месте изображения. Сравнение лиц на дальнейших шагах будет значительно упрощено.

Для этого используем алгоритм, называемый «оценка антропометрических точек» . Есть много способов сделать это, но мы собираемся использовать подход, предложенный в 2014 году Вахидом Кэземи и Джозефином Салливаном .

Основная идея в том, что выделяется 68 специфических точек (меток ), имеющихся на каждом лице, - выступающая часть подбородка, внешний край каждого глаза, внутренний край каждой брови и т.п. Затем происходит настройка алгоритма обучения машины на поиск этих 68 специфических точек на каждом лице:


68 антропометрических точек мы располагаем на каждом лице

Ниже показан результат расположения 68 антропометрических точек на нашем тестовом изображении:


СОВЕТ ПРОФЕССИОНАЛА НОВИЧКУ: этот же метод можно использовать для ввода вашей собственной версии 3D-фильтров лица реального времени в Snapchat!

Теперь, когда мы знаем, где находятся глаза и рот, мы будем просто вращать, масштабировать и сдвигать изображение так, чтобы глаза и рот оказались отцентрованы как можно лучше. Мы не будем вводить какие-либо необычные 3D-деформации, поскольку они могут исказить изображение. Мы будет делать только базовые преобразования изображения, такие как вращение и масштабирование, которые сохраняют параллельность линий (т.н. аффинные преобразования):

Теперь независимо от того, как повёрнуто лицо, мы можем отцентровать глаза и рот так, чтобы они были примерно в одном положении на изображении. Это сделает точность нашего следующего шага намного выше.

Если у вас есть желание попытаться выполнить этот шаг самостоятельно, используя Python и dlib, то имеется программа для нахождения антропометрических точек и программа для преобразования изображения на основе этих точек .

Шаг 3. Кодирование лиц

Теперь мы подошли к сути проблемы - само различение лиц. Здесь-то и начинается самое интересное!

Простейшим подходом к распознаванию лиц является прямое сравнение неизвестного лица, обнаруженного на шаге 2, со всеми уже отмаркированными лицами. Если мы найдём уже отмаркированное лицо, очень похожее на наше неизвестное, то это будет означать, что мы имеем дело с одним и тем же человеком. Похоже, очень хорошая идея, не так ли?

На самом деле при таком подходе возникает огромная проблема. Такой сайт как Фейсбук с миллиардами пользователей и триллионами фотографий не может достаточно циклично просматривать каждое ранее отмаркированное лицо, сравнивая его с каждой новой загруженной картинкой. Это потребовало бы слишком много времени. Необходимо распознавать лица за миллисекунды, а не за часы.

Нам требуется научиться извлекать некоторые базовые характеристики из каждого лица. Затем мы могли бы получить такие характеристики с неизвестного лица и сравнить с характеристиками известными лиц. Например, можно обмерить каждое ухо, определить расстояние между глазами, длину носа и т.д. Если вы когда-либо смотрели телесериал о работе сотрудников криминалистической лаборатории Лас-Вегаса («C.S.I.: место преступления»), то вы знаете, о чём идёт речь:


Как в кино! Так похоже на правду!

Самый надёжный метод обмерить лицо

Хорошо, но какие характеристики надо получить с каждого лица, чтобы построить базу данных известных лиц? Размеры уха? Длина носа? Цвет глаз? Что-нибудь ещё?

Оказывается, что характеристики, представляющиеся очевидными для нас, людей, (например, цвет глаз) не имеют смысла для компьютера, анализирующего отдельные пиксели на изображении. Исследователи обнаружили, что наиболее адекватным подходом является дать возможность компьютеру самому определить характеристики, которые надо собрать. Глубинное обучение позволяет лучше, чем это могут сделать люди, определить части лица, важные для его распознавания.

Решение состоит в том, чтобы обучить глубокую свёрточную нейронную сеть (именно это мы делали в выпуске 3). Но вместо обучения сети распознаванию графических объектов, как мы это делали последний раз, мы теперь собираемся научить её создавать 128 характеристик для каждого лица.

Процесс обучения действует при рассмотрении 3-х изображений лица одновременно:

1. Загрузите обучающее изображение лица известного человека

2. Загрузите другое изображение лица того же человека

3. Загрузите изображение лица какого-то другого человека

Затем алгоритм рассматривает характеристики, которые он в данный момент создаёт для каждого из указанных трёх изображений. Он слегка корректирует нейронную сеть так, чтобы характеристики, созданные ею для изображений 1 и 2, оказались немного ближе друг к другу, а для изображений 2 и 3 - немного дальше.

Единый «строенный» шаг обучения:

После повтора этого шага миллионы раз для миллионов изображений тысяч разных людей нейронная сеть оказывается в состоянии надёжно создавать 128 характеристик для каждого человека. Любые десять различных изображений одного и того же человека дадут примерно одинаковые характеристики.

Специалисты по обучению машин называют эти 128 характеристик каждого лица набором характеристик (признаков) . Идея сведения сложных исходных данных, таких как, например, изображение, к списку генерируемых компьютером чисел оказалась чрезвычайно перспективной в обучении машин (в частности, для переводов). Такой подход для лиц, который мы используем, был предложен в 2015 году исследователями из Гугл , но существует много аналогичных подходов.

Кодировка нашего изображения лица

Процесс обучения свёрточной нейронной сети с целью вывода наборов характеристик лица требует большого объёма данных и большой производительности компьютера. Даже на дорогой видеокарте NVidia Telsa требуется примерно 24 часа непрерывного обучения для получения хорошей точности.

Но если сеть обучена, то можно создавать характеристики для любого лица, даже для того, которое ни разу не видели раньше! Таким образом, этот шаг требуется сделать лишь один раз. К счастью для нас, добрые люди на OpenFace уже сделали это и предоставили доступ к нескольким прошедшим обучение сетям , которые мы можем сразу же использовать. Спасибо Брендону Амосу и команде!

В результате всё, что требуется от нас самих, это провести наши изображения лиц через их предварительно обученную сеть и получить 128 характеристик для каждого лица. Ниже представлены характеристики для нашего тестового изображения:

Но какие конкретно части лица эти 128 чисел описывают? Оказывается, что мы не имеем ни малейшего представления об этом. Однако на самом деле это не имеет значения для нас. Нас должно заботить лишь то, чтобы сеть выдавала примерно одни и те же числа, анализируя два различных изображения одного и того же человека.

Если есть желание попробовать выполнить этот шаг самостоятельно, то OpenFace предоставляет Lua-скрипт , создающий наборы характеристик всех изображений в папке и записывающий их в csv-файл. Можно запустить его так, как показано .

Шаг 4. Нахождение имени человека после кодировки лица

Последний шаг является фактически самым лёгким во всём этом процессе. От нас требуется лишь найти человека в нашей базе данных известных лиц, имеющего характеристики, наиболее близкие к характеристикам нашего тестового изображения.

Это можно сделать, используя любой базовый алгоритм классификации обучения машин. Какие-либо особые приёмы глубинного обучения не требуются. Мы будем использовать простой линейный SVM-классификатор , но могут быть применены и многие другие алгоритмы классификации.

От нас потребуется только обучить классификатор, который сможет взять характеристики нового тестового изображения и сообщить, какое известное лицо имеет наилучшее соответствие. Работа такого классификатора занимает миллисекунды. Результатом работы классификатора является имя человека!

Опробуем нашу систему. Прежде всего я обучил классификатор, используя наборы характеристики от примерно 20 изображений Уилла Феррелла, Чеда Смита и Джимми Фэлона:


О, эти восхитительные картинки для обучения!

Затем я прогнал классификатор на каждом кадре знаменитого видеоролика на Youtube, где на шоу Джимми Фэлона Уилл Феррелл и Чед Смит прикидываются друг другом :

Сработало! И смотрите, как великолепно это сработало для лиц с самых разных направлений - даже в профиль!

Самостоятельное выполнение всего процесса

Рассмотрим требуемые шаги:

1. Обработайте картинку, используя HOG-алгоритм, чтобы создать упрощённую версию изображения. На этом упрощённом изображении найдите тот участок, который более всего похож на созданное HOG-представление лица.

2. Определите положение лица, установив главные антропометрические точки на нём. После позиционирования этих антропометрических точек используйте их для преобразования изображения с целью центровки глаз и рта.

3. Пропустите отцентрованное изображение лица через нейронную сеть, обученную определению характеристик лица. Сохраните полученные 128 характеристик.

4. Просмотрев все лица, характеристики которых были сняты раньше, определите человека, характеристики лица которого наиболее близки к полученным. Дело сделано!

Теперь, когда вы знаете, как всё это работает, просмотрите инструкции с самого начала до конца, как провести весь процесс распознавания лица на вашем собственном компьютере, используя OpenFace :

Прежде чем начать

Убедитесь, что Python, OpenFace и dlib у вас установлены. Их можно установить вручную или использовать предварительно сконфигурированное контейнерное изображение, в котором это всё уже установлено:

Docker pull bamos/openface docker run -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash cd /root/openface

Совет профессионала новичку: если вы используете Docker на OSX, то можно сделать папку OSX/Users/ видимой внутри контейнерного изображения, как показано ниже:

Docker run -v /Users:/host/Users -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash cd /root/openface

Затем можно выйти на все ваши OSX-файлы внутри контейнерного изображения на /host/Users/…

Ls /host/Users/

Шаг 1

Создайте папку с названием./training-images/ в папке openface.

Mkdir training-images

Шаг 2

Создайте подпапку для каждого человека, которого надо распознать. Например:

Mkdir ./training-images/will-ferrell/ mkdir ./training-images/chad-smith/ mkdir ./training-images/jimmy-fallon/

Шаг 3

Скопируйте все изображения каждого человека в соответствующие подпапки. Убедитесь, что на каждом изображении имеется только одно лицо. Не требуется обрезать изображение вокруг лица. OpenFace сделает это автоматически.

Шаг 4

Выполните скрипты openface из корневого директория openface:

Сначала должны быть выполнены обнаружение положения и выравнивание:

./util/align-dlib.py ./training-images/ align outerEyesAndNose ./aligned-images/ --size 96

В результате будет создана новая подпапка./aligned-images/ с обрезанной и выровненной версией каждого из ваших тестовых изображений.

Затем создайте представления из выровненных изображений:

./batch-represent/main.lua -outDir ./generated-embeddings/ -data ./aligned-images/

Подпапка./generated-embeddings/ будет содержать csv-файл с наборами характеристик для каждого изображения.

Проведите обучение вашей модели обнаружения лица:

./demos/classifier.py train ./generated-embeddings/

Будет создан новый файл с именем./generated-embeddings/classifier.pk . Этот файл содержит SVM-модель, которая будет использоваться для распознавания новых лиц.

С этого момента у вас появляется работающий распознаватель лиц!

Шаг 5. Распознаём лица!

Возьмите новую картинку с неизвестным лицом. Пропустите её через скрипт классификатора, типа нижеследующего:

./demos/classifier.py infer ./generated-embeddings/classifier.pkl your_test_image.jpg

Вы должны получить примерно такое предупреждение:

=== /test-images/will-ferrel-1.jpg === Predict will-ferrell with 0.73 confidence.

Здесь, если пожелаете, можете настроить python-скрипт./demos/classifier.py .

Важные замечания:

Если результаты неудовлетворительные, то попытайтесь добавить ещё несколько изображений для каждого человека на шаге 3 (особенно изображения с разных направлений).

Данный скрипт будет всегда выдавать предупреждение, даже если он не знает это лицо. При реальном использовании необходимо проверить степень уверенности и убрать предупреждения с низким значением степени уверенности, поскольку они, скорее всего, неправильные.

Добавить метки

Технологии распознавания лиц применяются в самых разнообразных сферах :

  • обеспечение безопасности в местах большого скопления людей;
  • системы охраны, избежание незаконного проникновения на территорию объекта, поиск злоумышленников;
  • фейс-контроль в сегменте общепита и развлечений, поиск подозрительных и потенциально опасных посетителей;
  • верификация банковских карт;
  • онлайн-платежи;
  • контекстная реклама, цифровой маркетинг , Intelligent Signage и Digital Signage ;
  • фототехника;
  • криминалистика;
  • телеконференции;
  • мобильные приложения;
  • поиск фото в больших базах фотоснимков;
  • отметка людей на фото в социальных сетях и многие другие.

IBM выпустила базу из 1 млн фотографий лиц для обучения биометрических систем

2018

Распознавание лиц не работает в каждом втором смартфоне

В начале января 2019 года некоммерческая организация из Голландии провела тестирование 110 моделей смартфонов и обнаружила, что функция распознавания лиц, используемая для блокировки устройств, не работает должным образом более чем на каждом втором аппарате.

Исследование, проведенное Consumentenbond и его международными партнерами, показало, что для разблокировки 42 из протестированных смартфонов достаточно иметь фотографию владельца телефона. Подойдет любая фотография, например, полученная из социальных сетей, с камер видеонаблюдения или любым другим способом.

Программная технология распознавания лиц, доступная владельцам многих смартфонов под управлением Android, достигла такого уровня развития, что уже не позволяет обмануть себя фотографией владельца

Результаты этого исследования вызывают беспокойство у пользователей и служб безопасности. Использование напечатанной фотографии лица владельца - это первая проверка функции распознавания лиц, которую используют обычные пользователи и тестеры. Но главное, это первая уловка, которой попробуют воспользоваться злоумышленники для взлома смартфона , защищенного идентификацией лица, прежде чем перейти к более сложным атакам, которые включают создание масок или 3D-печатных голов владельца телефона.

Любая система распознавания лиц, которая не проходит «фототест», обычно считается бесполезной. Согласно Consumentenbond, модели Asus , BlackBerry , Huawei , Lenovo , , Nokia , Samsung , Sony и Xiaomi не прошли подобные тесты. В случае с Sony провалили тест абсолютно все модели. Еще шесть моделей - Honor и шесть моделей LG - прошли тестирование только в «строгом» режиме. Хотя по результатам этого теста пользователи могут заключить, что включать распознавание лиц не стоит, 68 устройств, включая флагманские модели Apple iPhone XR и , выдержали эту простую атаку, как и многие другие высокопроизводительные модели на Android от Samsung, Huawei, OnePlus и Honor.

Полный список моделей, которые прошли фототест, можно найти на сайте Consumentenbond.

Самые популярные системы распознавания лиц в Китае

Одной из наиболее распространенных программ для распознавания лиц является Face++ , которая используется для управления доступом повсюду – от железнодорожных вокзалов Пекина до офисного здания Alibaba .

Сама Alibaba разработала собственные системы, которые будут применяться в шанхайском метро для идентификации пассажиров с помощью их лица и голоса.

Полицейские, следящие за безопасностью на одном из китайских железнодорожных вокзалов, носят специальные солнечные очки с функцией распознавания лиц. Устройство способно идентифицировать человека за 100 миллисекунд и уже не раз помогало правоохранительным органам в поимке преступников.

В китайском Шеньчжене впервые в мире заработала камера фиксации нарушений пешеходами. Она установлена на одном из напряженных переходов города и следит за людьми, перебегающими дорогу на запрещающий сигнал светофора. Для определения личности нарушителя камера использует технологию распознавания лиц.

На вступительных экзаменах в колледжи по всей стране используется распознавание лиц и отпечатков пальцев, чтобы гарантировать, что экзаменуемые являются настоящими студентами.

После ряда похищений детей некоторые детские сады открывают двери только тем людям, чьи лица зарегистрированы в системе. В одном из детских садов установили более 200 камер для обеспечения безопасности.

Даже в некоторых туалетах установили автоматы с распознаванием лиц. Аппарат выдает 60 см туалетной бумаги одному человеку не чаще чем раз в девять минут.

У Alibaba есть магазины с безналичной оплатой Hema, в которых пользователи сканируют лицо и вводят номер телефона для проведения платежей через систему Alipay .

Компания Alibaba совместно с производителем гостиничных информационных систем Shiji установила систему распознавания лиц для регистрации в 50 отелях. Китайские туристы, прибегающие к услугам онлайн-турагентства Fliggy (принадлежащего Alibaba), могут сначала забронировать в нем отель, а затем, используя «маску» своего лица быстро заселиться в отель и оформить депозит.

В Пекине решили бороться с незаконной арендой госжилья с помощью умных замков, распознающих хозяев по лицу

В конце декабря 2018 года стало известно, что в государственном жилье Пекина ускоренными темпами внедряются «умные» замки с технологией распознавания лиц. С их помощью местные власти усиливают меры против незаконной пересдачи в аренду государственного жилья, предоставляемого малообеспеченным семьям по льготным расценкам.

"Умный" замок с распознаванием лиц

Предполагается, что к концу июня 2019 года замки со встроенной системой сканирования лиц будут использоваться во всех программах предоставления льготного госжилья в Пекине с участием 120 тыс. квартиросъемщиков, сообщает The South China Morning Post со ссылкой на пекинское издание The Beijing News.

Сопоставляя информацию, полученную при сканировании лиц посетителей, с изображениями из сохраненной базы данных, система распознает хозяев и не открывает двери незнакомцам, рассказал в интервью Beijing News директор информцентра при Пекинском государственном жилищном центре Шан Чжэньюй (Shan Zhenyu).

Кроме того, система может использоваться для присмотра за одинокими пожилыми людьми. Если престарелый человек в течение определенного периода времени не выходит и не заходит в дом, управляющему по недвижимости будет отправлено уведомление о необходимости зайти с проверкой.

В таких крупных мегаполисах, как Пекин, аренда жилья очень дорогая. В среднем съемная квартира в столице Поднебесной обходится примерно в 5 тыс. юаней в месяц (около $730), тогда как арендная плата за госжилье может составлять менее 2 тыс. юаней в месяц ($290).

Власти Пекина надеются, что умные замки, узнающие хозяев по лицу, повысят безопасность, предотвратят незаконную передачу в субаренду и гарантируют, что льготой пользуются только действительно нуждающиеся люди.

По состоянию на конец 2018 года смарт-замки с распознаванием лиц задействованы в 47 программах предоставления льготного госжилья в Пекине. С их помощью получено порядка 100 тысяч скан-изображений лиц арендаторов и членов их семей.

Китайский Airbnb устанавливает в домах «умные» замки с распознаванием лиц

Провал в Лондоне. Система распознавания лиц в метро никого не узнает

В конце декабря 2018 года стало ясно, что развернутая в лондонском метро система распознавания лиц никого не узнает. Лондонских полицейских критикуют за использование немаркированных фургонов для проверки спорных и неточных технологий автоматического распознавания лиц у рождественских покупателей. Подробнее .

Туалеты с распознаванием лиц в Китае сокращают потребление туалетной бумаги

В конце 2018 года стало известно о растущем в Китае числе общественных туалетов с системой распознавания лиц, которая позволяет экономить туалетную бумагу.

В декабре такой туалет заработал в Baotu Spring Park в городе Цзинань (провинция Шаньдун), расположенный в 400 км к югу от Пекина. В этой уборной находится автомат, выдающий туалетную бумагу после сканирования лица. За один подход аппарат выдает примерно 70 см бумаги, а для получения дополнительной порции санитарно-гигиеническго изделия этому же человеку нужно подождать 9 минут и снова поднести голову к камере для идентификации.

Для разблокировки смартфона хакеры и полиция печатают голову владельца на 3D-принтере

В 14 американских аэропортах заработала система распознавания лиц

20 августа 2018 года в 14 американских аэропортах заработала система распознавания лиц. О ее эффективности рассказала Служба таможенного и пограничного контроля (U.S. Customs and Border Patrol, CBP).

Как сообщается на сайте ведомства, 22 августа 26-летний пассажир, прилетевший в Вашингтонский аэропорт имени Даллеса из Сан-Паулу (Бразилия), предъявил на пункте контроля паспорт гражданина Франции. Однако биометрическая система выявила, что лицо мужчины не совпадает с фотографией в документе.

В аэропорту Вашингтона система распознавания лиц поймала мужчину - он пытался въехать в США с чужим паспортом

Когда прибывшего в США отправили на дополнительный досмотр, он «явно нервничал» и, как выяснилось, не зря. В его туфле нашли удостоверение личности на имя гражданина республики Конго, которым на самом деле являлся задержанный. Теперь за попытку въехать в США под фальшивыми документами ему грозит тюремное заключение.

Системы распознавания лиц полиции Британии оказались бесполезными

В мае 2018 года стало известно о больших проблемах в системах распознавания лиц, которые используют британские полицейские. В результате может быть подано большое количество исков - этот вопрос стал «приоритетным» для Управления комиссара по информации (Information Commissioner"s Office), приводит BBC слова представителя регулятора Элизабет Денхем (Elizabeth Denham).

Британская правозащитная организация Big Brother Watch опубликовала результаты исследования, показавшие «ошеломляющее» количество невиновных людей, из которых технология распознавания лиц сделала потенциальных преступников.

Так, с мая 2017 года по март 2018-го система выдала для полиции Южного Уэльса 2685 совпадений людей с базой данных подозреваемых, однако 2451 из них оказались ложными.

Лондонские правоохранительные органы применяли технологию идентификации лиц на карнавале Ноттинг-Хилл в 2017 году. Показания системы оказались ошибочными в 98% случаев, когда срабатывал сигнал о том, что якобы замечен подозреваемый из полицейской базы данных. Решение устроено так, что при выявлении возможного нарушителя закона на пульт дежурного в ближайшее отделение полиции поступает сигнал.

Полиция начала винить выдающие некачественную картинку камеры и то, что систему использовали в первый раз, но и в последующих 15 мероприятиях (футбольные матчи, фестивали, парады), во время которых задействовали технологию, результат не улучшился. Только на трех система не ошиблась ни разу.

В полиции также рассказали, что за девять месяцев работы системы распознавания лиц она верно отметила более 2 тыс. человек, что привело к 450 арестам. При этом никто не попал в заключение ошибочно. Это объясняется тем, что помимо работы алгоритмов в работе задействованы люди, которые проверяют срабатывания и принимают окончательные решения.

Ученые изобрели новый способ обмана систем распознавания лиц

С каждым днем системы распознавания лиц становятся сложнее и все чаще используются в повсеместной жизни, к примеру, в минувшем году компания Apple выпустила смартфон iPhone X, оснащенный биометрической системой Face ID . Однако подобные системы можно обмануть, в частности, с помощью инфракрасных светодиодов. Инфракрасные лучи не видимы простому глазу, однако большинство камер могут улавливать инфракрасные сигналы .

Китайские исследователи создали бейсбольную кепку, оснащенную миниатюрными инфракрасными светодиодами, которые размещены таким образом, что инфракрасные лучи, падающие на лицо владельца головного убора, помогают не только скрыть его личность, но и «выдать себя за другого человека для прохождения основанной на распознавании лица аутентификации». Данная задача более сложная и требует использования глубокой нейронной сети для распознавания статичного изображения лица и правильного проецирования инфракрасных лучей на лицо самозванца.

Для проверки своей теории исследователи использовали фотографии четырех случайных людей, им удалось обмануть системы распознавания лиц в 70% случаев при условии наличия небольшого внешнего сходства между жертвой и самозванцем.

«На основании наших находок и атак, мы можем сделать вывод, что существующие на сегодняшний день технологии распознавания лиц сложно назвать безопасными и надежными в аспекте критических сценариев, таких как аутентификация и наблюдение», - заключили исследователи. Они также добавили, что инфракрасные светодиоды можно прятать не только в бейсбольных кепках, но также в зонтах, волосах или париках.

Российские близнецы требуют с Apple 20 млн за то, что iPhone X не видит между ними разницы

Братья-близнецы из Владимира - 26-летние Александр и Илья Тунчики - направили в российский офис компании Apple претензию в связи с тем, что система распознавания лиц Face ID на их смартфонах iPhone X одинаково идентифицирует обоих молодых людей, тем самым, по их мнению, нарушая защиту персональных данных .

Обиженные пользователи требуют от компании усовершенствовать технологию, а также компенсировать моральный ущерб в размере 20 млн руб., сообщил в январе 2018 год ТАСС представляющий интересы братьев юрист Роман Ардыкуца.

«Близнецы приобрели… iPhone X именно ради того, чтобы воспользоваться функцией разблокировки экрана при помощи лиц. К их разочарованию, каждый аппарат узнает обоих братьев, о чем они не были предупреждены при покупке, эта информация отсутствует в инструкции. Именно поэтому заявители просят компанию доработать технологию», - пояснил он.

2017

Распознавание лиц в ритейле

В ноябре 2017 года телеканал CNBC выпустил сюжет, рассказывающий о внедрении систем распознавания лиц в магазинах. Ритейлеры используют такие технологии для сбора данных о клиентах и подбора предложений на основе соответствующих данных.

В ритейле распознавание лиц применяется в основном для того, чтобы мотивировать покупателей. Например, если человека узнают на входе в магазин и видят его историю покупок, то сотрудники магазина лучше знают, что ему предложить. Так, если он покупал в магазине электроники телевизор, сотрудник его узнает, обратится по имени и предложит приобрести новый пульт.

По данным гонконгской ИТ-компании Jardine One Solution (JOS), многие розничные сети применяют возможности распознавания лиц для того, чтобы собирать данные о посетителях своих магазинов.


Сама JOS помогает розничным компаниям с распознаванием лиц клиентов с целью составления профиля покупателей и отслеживания их действий в торговой точке. Речь идет о таких данных, как количество посетителей, их возраст, пол, этническая принадлежность. Такие сведения помогают магазинам лучше знать о потоке клиентов и подбирать персонализированные предложения для них, отметил Лант.

К примеру, используя анализ данных, поступающих из систем распознавания лиц, можно подбирать музыку, играющую в торговом зале.

В JOS говорят, все полученные данные клиентов анонимны, однако вопрос конфиденциальности остается актуальным. Технологии не препятствуют внедрению таких систем, но есть опасения, связанные с личными данными и культурой, признает Марк Лант.

Он добавил, что ритейлеры тратят огромные средства на предотвращение утечек данных и защиту информации. Скандал, связанный с хищением данных миллионов клиентов Uber , показывает, что компании не могут чувствовать себя в безопасности, а пользователи должны проявлять осторожность, раскрывая персональную информацию, считает управляющий директор JOS.

Основатель и генеральный директор компании HeadCount (предлагает магазинам услуги по мониторингу и улучшению посещаемости) Марк Риски (Mark Ryski) говорит, что биометрические данные, в том числе те, которые генерируют системы распознавания лиц, относятся к категории деликатным и имеют большой потенциал - особенно в целях обеспечения безопасности и улучшения качества обслуживания клиентов.

Пример использования системы распознавания лиц в магазинах

По мнению старшего вице-президента по стратегии обслуживания клиентов компании InMoment Бреннана Уилки (Brennan Wilkie), у использования оборудования для распознавания лиц в торговых помещениях действительно есть большой потенциал. Например, такие устройства способны сопоставить выражение лица клиента в магазине с данными о нем, его лояльности бренду и других покупках. Для того, чтобы смягчить проблему конфиденциальности пользователей, магазинам нужно продемонстрировать клиентам, какие преимущества они получают, как это было в свое время с кассами самообслуживания или с банковскими картами с чипами, уверен он.

Согласно прогнозу аналитической компании MarketsandMarkets , объем мирового рынка систем распознавания лиц достигнет $6,8 млрд к 2021 году.

Авторизацию в iPhone X по лицу взломали маской за $150. Видео

Как обойти сканер лица на Samsung Galaxy Note 8

Веб-дизайнер Мэл Тахон опубликовал в своем твиттере видео о том, как легко обойти сканер лица на Galaxy Note 8. В своем эксперименте Тахон держит два Note 8 напротив друг друга, на одном из которых - его фото, а на другом - включенная система сканирования лица.

Обман биометрической защиты Samsung Galaxy S8

Исследователям удалось выдать белого мужчину за Миллу Йовович почти в 90 процентах случаев. Женщину азиатской внешности в специальных очках компьютер в стольких же процентах случаев принимал за мужчину с Ближнего Востока.

Кроме того, они попробовали свой метод на коммерческой программе Face++, которая используется в Alibaba для авторизации платежей. В этом случае они не сажали человека в очках перед камерой, а сначала делали его фотографию в очках и потом загружали ее в программу. В итоге им удалось выдать одного человека за другого в 100 процентах случаев.

Общественные организации США против распознавания лиц

Коалиция из 52 общественных и правозащитных организаций направила в Министерство юстиции письмо с просьбой расследовать чрезмерное использование технологий распознавания лиц в работе органов правопорядка. Также коалицию беспокоит неодинаковая точность машинного распознавания лиц разной расовой принадлежности, которая может стать основой для проявления расизма со стороны сотрудников органов .

Особенно этими технологиями злоупотребляет местная полиция, полиция штатов и ФБР , гласит письмо. Коалиция просит Министерство юстиции в первую очередь заняться проверкой тех полицейских департаментов, которые уже находятся под следствием в связи с предвзятым отношением к гражданам с небелым цветом кожи.

Основанием для просьбы послужили результаты исследования Центра приватности и технологий Школы права университета Джорджтауна. Исследование показало, что лица половины взрослого населения США при разных обстоятельствах были отсканированы правительственным идентификационным ПО.

Исследователи отмечают, что в США на сегодняшний день не существует серьезных правил, регулирующих использование этого ПО. По словам Альваро Бедойи (Alvaro Bedoya), директора Центра и соавтора исследования, сфотографировавшись на водительские права, человек уже попадает в базу лиц полиции или ФБР. Это особенно существенно с учетом того, что распознавание лиц бывает неточным, и в этом случае может наносить вред невинным гражданам.

Примеры проектов в HSBC, MasterCard и Facebook

Услуга будет доступна для корпоративных клиентов НSBC. Через банковское мобильное приложение они смогут открывать счета по одному щелчку селфи. Банк же подтверждает личность клиента с помощью программы распознавания лиц. Фотография сличается со снимками, ранее загруженными в систему, например, с паспорта или водительских прав. Предполагается, что новый сервис избавит от необходимости запоминать цифровые коды и сократит время идентификации.

Чтобы воспользоваться данной опцией, пользователям необходимо будет скачать специальное приложение на свой компьютер, планшет или смартфон. Затем посмотреть в камеру или использовать сканер устройства для распознавания отпечатков пальцев (если он имеется на устройстве). Однако (по крайней мере, на данный момент), пользователям все еще потребуется дополнительно предоставлять данные своей банковской карты. Лишь в том случае, если потребуется дополнительная идентификация, то пользователи смогут воспользоваться вышеописанной опцией.

Благодаря такому новому подходу, MasterCard собирается защитить пользователей от поддельных онлайн-транзакций, которые осуществляются с помощью краденых паролей пользователей, а также предоставить пользователям более удобную систему авторизации. Компания сообщила, что 92% людей, которые тестировали эту новую систему, предпочли ее традиционным паролям.

Некоторые эксперты сомневаются в защите информации от того, чтобы кибер-преступники не смогли легко получить отпечатки пальцев пользователя или фотографию его лица в том случае, если транзакция осуществляется при небезопасном использовании публичной сети Wi-Fi .

Эксперты по кибер-безопасности утверждают, что система должна включать несколько уровней безопасности для предотвращения потенциальной кражи фотографий лица пользователей. Ведь онлайн-платежи представляют собой привлекательную мишень для кибер-преступников.

В конце 2015 года группа экспертов из Технического Университета Берлина продемонстрировала возможность извлечения PIN -кода любого смартфона при использовании сэлфи пользователя. Для этого они считывали данный код, который отображался в глазах пользователя, когда он вводил его на своем телефоне OPPO N1. Хакеру достаточно просто перехватить контроль над фронтальной камерой смартфона для выполнения этой элементарной атаки. Смог бы кибер-преступник перехватить контроль за устройством пользователя, сделать его сэлфи и после этого выполнить онлайн-платежи с помощью набранного пароля, который хакер увидел в глазах своей жертвы?

MasterCard настаивает на том, что ее механизмы обеспечения безопасности будут в состоянии обнаруживать подобное поведение. Например, пользователям необходимо будет мигать для приложения, чтобы продемонстрировать «живой» образ человека, а не его фотографию или предварительно снятое видео. Система сопоставляет изображение лица пользователя, конвертируя его в код и передавая его по безопасному протоколу через Интернет в MasterCard. Компания обещает, что эта информация будет безопасно храниться на ее серверах, при этом сама компания не сможет реконструировать лицо пользователя.

Летом 2016 года стало известно, что исследователи обошли систему биометрической аутентификации, используя фото из Facebook . Атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам .

Команда исследователей из Университета штата Северная Каролина продемонстрировали метод обхода систем безопасности, построенных на технологии распознавания лиц, при помощи доступных фотографий пользователей соцсетей. Как поясняется в докладе специалистов, атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам.

«Не удивительно, что личные фото, размещенные в социальных сетях, могут представлять угрозу конфиденциальности. Большинство крупных соцсетей рекомендуют пользователям установить настройки конфиденциальности при публикации фото на сайте, однако многие из этих снимков часто доступны широкой публике или могут быть просмотрены только друзьями. Кроме того, пользователи не могут самостоятельно контролировать доступность своих фото, размещенных другими подписчиками», - отмечают ученые.

В рамках эксперимента исследователи отобрали фотографии 20 добровольцев (пользователей Facebook, Google+ , LinkedIn и других социальных ресурсов). Затем они использовали данные снимки для создания трехмерных моделей лиц, «оживили» их с помощью ряда анимационных эффектов, наложили на модель текстуру кожи и откорректировали взгляд (при необходимости). Получившиеся модели исследователи протестировали на пяти системах безопасности, четыре из них удалось обмануть в 55-85% случаев.

Согласно отчету компании Technavo (зима 216 года) одной из ключевых тенденций, оказывающих положительное влияние на рынок технологий биометрической идентификации по лицу (facial recognition ), является внедрение мультимодальных биометрических систем в таких секторах, как здравоохранение , банковский, финансовый сектор, сектор ценных бумаг и страхования, сектор перевозок, автомобильный транспорт, а также в госсекторе.

Основатель проекта Биньямин Леви (Benjamin Levy) рассказал, что благодаря высокому уровню защищенности IsItYou сможет распознать 99999 из 100 тысяч случаев обмана. Леви попытался убедить банки о необходимости внедрения его системы уже в следующем году. Она будет использоваться для проведения финансовых транзакций.

Google уже использует функцию распознавания лица в Android . Таким образом можно разблокировать устройство под управлением этой мобильной ОС . Тем не менее, разработчики неоднократно утверждали, что распознавание лица недостаточно защищено по сравнению с классическими способами. В связи с этим эксперты засомневались в утверждениях Биньямина Леви.

Мариос Саввидис (Marios Savvedes) из университета Карнеги-Меллон занимается исследованием функции распознавания лица. Он считает, что самостоятельно проведенное испытание на защищенность IsItYou не может быть надежным.

Такого же мнения придерживается мировой эксперт в области биометрии доктор Массимо Тистарелли (Massimo Tistarelli). Он сказал, что в Европе проводится полномасштабный научный проект Tabula Rasa, главная цель которого - разработка защиты от мошенничества для биометрических способов идентификации. По его словам, перед выходом на рынок следует провести ряд независимых исследований, подтверждающих эффективность продукта.

Пожалуй нет ни одной другой технологии сегодня, вокруг которой было бы столько мифов, лжи и некомпетентности. Врут журналисты, рассказывающие о технологии, врут политики которые говорят о успешном внедрении, врут большинство продавцов технологий. Каждый месяц я вижу последствия того как люди пробуют внедрить распознавание лиц в системы которые не смогут с ним работать.

Тема этой статьи давным-давно наболела, но было всё как-то лень её писать. Много текста, который я уже раз двадцать повторял разным людям. Но, прочитав очередную пачку треша всё же решил что пора. Буду давать ссылку на эту статью.

Итак. В статье я отвечу на несколько простых вопросов:

Как вы думаете, откуда создатели алгоритмов взяли эти базы?

Маленькая подсказка. Первый продукт NTech, который они сейчас - Find Face, поиск людей по вконтакту. Думаю пояснения не нужны. Конечно, вконтакт борется с ботами, которые выкачивают все открытые профили. Но, насколько я слышал, народ до сих пор качает. И одноклассников. И инстаграмм.

Вроде как с Facebook - там всё сложнее. Но почти уверен, что что-то тоже придумали.
Так что да, если ваш профиль открыт - то можете гордиться, он использовался для обучения алгоритмов;)

Про решения и про компании

Тут можно гордиться. Из 5 компаний-лидеров в мире сейчас два - Российские. Это N-Tech и VisionLabs. Пол года назад лидерами был NTech и Vocord, первые сильно лучше работали по повёрнутым лицам, вторые по фронтальным.

Сейчас остальные лидеры - 1-2 китайских компании и 1 американская, Vocord что-то сдал в рейтингах.

Еще российские в рейтинге itmo, 3divi, intellivision. Synesis - белорусская компания, хотя часть когда-то была в Москве, года 3 назад у них был блог на Хабре. Ещё про несколько решений знаю, что они принадлежат зарубежным компаниям, но офисы разработки тоже в России. Ещё есть несколько российских компаний которых нет в конкурсе, но у которых вроде неплохие решения. Например есть у ЦРТ. Очевидно, что у Одноклассников и Вконтакте тоже есть свои хорошие, но они для внутреннего пользования.

Короче да, на лицах сдвинуты в основном мы и китайцы.

NTech вообще первым в миру показал хорошие параметры нового уровня. Где-то в конце 2015 года . VisionLabs догнал NTech только только. В 2015 году они были лидерами рынка. Но их решение было прошлого поколения, а пробовать догнать NTech они стали лишь в конце 2016 года.

Если честно, то мне не нравятся обе этих компании. Очень агрессивный маркетинг. Я видел людей которым было впарено явно неподходящее решение, которое не решало их проблем.

С этой стороны Vocord мне нравился сильно больше. Консультировал как-то ребят кому Вокорд очень честно сказал «у вас проект не получится с такими камерами и точками установки». NTech и VisionLabs радостно попробовали продать. Но что-то Вокорд в последнее время пропал.

Выводы

В выводах хочется сказать следующее. Распознавание лиц это очень хороший и сильный инструмент. Он реально позволяет находить преступников сегодня. Но его внедрение требует очень точного анализа всех параметров. Есть где достаточно OpenSource решения. Есть применения (распознавание на стадионах в толпе), где надо ставить только VisionLabs|Ntech, а ещё держать команду обслуживания, анализа и принятия решения. И OpenSource вам тут не поможет.

На сегодняшний день нельзя верить всем сказкам о том, что можно ловить всех преступников, или наблюдать всех в городе. Но важно помнить, что такие вещи могут помогать ловить преступников. Например чтобы в метро останавливать не всех подряд, а только тех кого система считает похожими. Ставить камеры так, чтобы лица лучше распознавались и создавать под это соответствующую инфраструктуру. Хотя, например я - против такого. Ибо цена ошибки если вас распознает как кого-то другого может быть слишком велика.

Добавить метки

Колонка

Она ставит под угрозу безопасность и гражданские права человека, поэтому частичное её регулирование должно быть заменено полным запретом. Пока весь мир увлечён преимуществами технологии распознавания лиц, некоторые специалисты по безопасности считают, что она таит в себе большое зло для человечества. Преподаватель права и информатики Вудроу Хартцог и преподаватель философии Эван Селинджер изложили свою точку зрения на методы контроля технологии в статье на Medium.

Жители Трои были бы в восторге

Очень легко поддаться внешне заманчивому, но в действительности ошибочному мнению о том, каким будет будущее человечества в мире, раскрывшем весь скрытый потенциал технологии распознавания лиц. Люди смогут мгновенно получать информацию о незнакомцах, им больше не придётся запоминать массу паролей или бояться забыть кошелёк. Можно будет запросто находить события с определённым человеком в архивах фотографий и видео, оперативно разыскивать пропавших людей или преступников, сделать безопасными общественные места.

Казалось бы, технология несёт одни только плюсы, в мире воцарится абсолютная справедливость, реализуются самые невероятные идеи человечества. Но ни один из изобретённых человечеством механизмов наблюдения не несёт в себе такой опасности, как технология распознавания лиц.

Соблазняясь этим утопическим видением, люди будут впускать технологию распознавания лиц в своё жилище и открывать доступ к своим устройствам, позволяя ей занять центральное место во всё новых аспектах жизни. Это будет означать, что ловушка захлопнулась, а после придёт неприятное осознание того, что технология была своего рода троянским конём. Этот идеальный инструмент притеснения слишком хорош, чтобы им не воспользовались правительства для установления авторитарного контроля и всеобъемлющих режимов, которые уничтожат понятие личной жизни.

Этот троянский конь не должен проникнуть в город.

Текущие обсуждения

Американский союз защиты гражданских свобод совместно с 70 другими правозащитными организациями потребовал от Amazon прекратить предоставлять технологию распознавания лиц правительству, а также призвал Конгресс ввести мораторий на её использование правительством. К ним подключились и СМИ, выразили свою обеспокоенность. Например, редколлегия Washington Post считает , что Конгресс обязан немедленно вмешаться в ситуацию. У парламентариев тоже есть веский повод задуматься: некоторых из них программа по распознаванию лиц Amazon с преступниками.

Не остались в стороне и редакторы The Guardian. Президент Microsoft Брэд Смит обратился в своём блоге к правительству США с просьбой ввести регулирование технологии распознавания лиц:

«Единственный надёжный способ контролировать использование технологии правительством - это чтобы оно самостоятельно и с учётом возможных обстоятельств контролировало её использование. Мы считаем, что сегодня существует острая необходимость в правительственной инициативе по контролю за правомерным применением технологии распознавания лиц, основанной на решении двухпартийной комиссии экспертов»

Мнение лидеров компаний имеет немаловажное значение, как и законодательные акты, ограничивающие использование технологии. Но лишь частичной поддержки и тщательно прописанных инструкций никогда не будет достаточно. Законы могли бы принести большую пользу, но их, скорее всего, начнут вводить тогда, когда технология станет в разы дешевле и проще в использовании. Смит подчёркивает, что Microsoft призывала к созданию национального закона в этой области ещё в 2005 году. Прошло более десяти лет, но подобный закон Конгресс так и не принял.

Если технологию распознавания лиц продолжат разрабатывать и внедрять в жизни, возникнет гигантская инфраструктура, которая поглотит человечество. Как показывает история, широкое внимание к успехам, страх не обеспечить должного уровня безопасности и пьянящее чувство власти могут приводить к обману, сдвигу корпоративных ценностей и в конечном счёте систематическом злоупотреблению технологией.

Благополучие человечества в будущем возможно только в том случае, если технология распознавания лиц будет запрещена, прежде чем слишком прочно укрепится в жизни человека.

Почему нужен запрет

Необходимость полного запрета систем распознавания лиц - чрезвычайна. Но некоторые талантливые учёные, вроде Джудит Донат , считают эту позицию неверной. Они предлагают более нейтральную с технологической точки зрения тактику: запрет на конкретные действия, а также обозначение ценностей и прав, которые нужно защитить. Этот подход вполне разумен почти для всех цифровых технологий.

Но ни один из изобретённых человечеством механизмов наблюдения не несёт в себе такой опасности, как технология распознавания лиц. Это недостающий элемент уже опасной инфраструктуры наблюдения за людьми, разработанный потому, что эта инфраструктура нужна правительствам и частному бизнесу. И если технологии становятся опасными в такой степени, а соотношение пользы и вреда - настолько искажённым, пришло время задуматься о категорических запретах. На законодательном уровне уже запрещены некоторые виды опасных цифровых технологий, например шпионского ПО . Технология распознавания лиц несёт в себе гораздо большие риски, и её не мешало бы удостоить особого юридического внимания. Нужен конкретный запрет на основе надежной, целостной, основанной на ценностях и в значительной степени нейтральной с точки зрения технологий нормативной базы. Такая система поможет избежать нормативных ситуаций, когда законодатели пытаются догонять технические тенденции.

Наблюдение с использованием систем распознавания лиц по своей сути деспотично. Существование таких систем, которые сами часто скрыты от глаз человека, - нарушение гражданских свобод, потому что люди ведут себя иначе, если подозревают, что за ними наблюдают. Даже законы, которые гарантируют строгие защитные меры, не предотвратят гнетущее ощущение того, что будут ущемлены возможности самовыражения человека.

Вот примеры злоупотребления и разрушительных действий технологии распознавания лиц:

  • непропорциональное внимание к людям небелого цвета кожи , другим меньшинствам и незащищённым народам ;
  • замена презумпции невиновности на принцип «люди, чья вина пока что не доказана»;
  • распространение насилия и жестокости;
  • отрицание фундаментальных прав и возможностей, например защиты от произвольного отслеживания правительствами передвижения, привычек, отношений, интересов и мыслей человека;
  • беспрерывная «работа» закона - как постоянная мера пресечения;
  • уничтожение концепции хранения информации «practically obscure », когда данные находятся в открытом доступе, но хранятся в различных источниках и найти их чрезвычайно сложно;
  • распространение «капитализма надзора ».

Как отмечает исследователь технологии распознавания лиц Клэр Гарви, ошибки в ней могут иметь фатальные последствия:

«Что произойдёт, если подобная система даст сбой? В случае ошибки системы видеонаблюдения будут преследовать, допрашивать или могут даже арестовать и обвинить в преступлении невинного человека. Или портативные камеры с системой распознавания лиц у полицейских: если система укажет на человека, который якобы может представлять опасность для общества, полицейский должен будет мгновенно решить, применять ли ему оружие. В результате ложного оповещения могут пострадать невинные люди».

В числе прочих есть два доклада, которые подробно затрагивают многие из этих проблем: весьма ценная работа об использовании правоохранителями распознавания лиц, опубликованная старшим юристом Electronic Frontier Foundation Дженнифер Линч, а также исследование специалистов Center on Privacy & Technology университета Джорджтауна.

Несмотря на описанные в докладах проблемы, не все убеждены, что запрет действительно необходим. Ведь другие технологии представляют не меньшую угрозу: геолокационные данные, информация из профилей в соцсетях, результаты поисковых запросов и многие другие источники информации о пользователях можно использовать, чтобы составить их детальный портрет. Но распознавание лиц всё же несёт опасность иного характера и стоит особняком даже по сравнению с биометрическими данными: отпечатками пальцев, образцами ДНК или сканированием сетчатки глаза.

Системы, обрабатывающие изображения лиц, имеют пять отличительных особенностей, которые дают все основания для их запрета. Во-первых, лицо трудно скрыть или изменить. Лица нельзя зашифровать, как данные на цифровых носителях, в электронных или текстовых сообщениях. Их можно снимать с помощью удалённых камер, а стоимость самой технологии и хранения изображений в облаке постоянно снижается, что приводит к всё более широкому применению таких систем мониторинга.

Во-вторых, существуют базы данных имён и лиц, например для водительских удостоверений, или аккаунты в соцсетях, к которым можно очень легко получить доступ.

В-третьих, в отличие от типичных систем наблюдения, которые часто требуют дорогостоящее оборудование или новые источников данных, входные данные для распознавания лиц находятся повсюду и поступают непосредственно в момент съёмки камерами.

В-четвёртых, переломный момент. Любая база данных лиц для идентификации арестованных или попавших в поле зрения камер личностей с помощью нескольких строчек кода может «сравниваться» с любой другой базой в режиме реального времени, подключаясь к портативным камерам полицейских или системам видеонаблюдения. Губернатор штата Нью-Йорк Эндрю Куомо точно подметил причины распространения технологии распознавания лиц, утверждая, что простое сканирование номерных знаков автомобилей покажется мелочью по сравнению с возможностями применения камер со встроенной технологией: «Система считывает номерной знак, чтобы вычислить нарушителя, но штрафы - далеко не самая большая польза от этой аппаратуры. Мы переходим на технологию распознавания лиц, и теперь система сможет сканировать лицо водителя и проверять его по базам данных, что открывает абсолютно новые перспективы».

В-пятых, лицо, в отличие от отпечатков пальцев, походки или снимков сетчатки, - центральный элемент идентичности человека. Лицо - это посредник между виртуальной и реальной жизнью человека, связующее звено между действиями, которые человек выполняет анонимно, под своим или чужим именем. Может легко показаться, что обеспечивать конфиденциальность лиц, как любой другой частной информации, не нужно, потому что в жизни люди обычно не закрывают лица. За исключением стран, где женщины обязаны носить паранджу, люди со скрытым лицом вызывают подозрения.


Обеспечивать конфиденциальность лица человека действительно необходимо, потому что в прошлом люди вырабатывали институты и ценности, связанные с защитой частной информации в те периоды, когда опознать незнакомых людей в основном было достаточно сложно. По причине биологических особенностей память человека ограничена, и без технологической надстройки он может запомнить лишь небольшое количество лиц. А с учётом численности и распределения населения за свою жизнь человек встретит не так уж много новых людей. Эти ограничения создают своего рода «белые пятна», благодаря чему у людей были хорошие шансы затеряться в толпе.

Недавние решения Верховного суда США касательно четвёртой поправки (которая запрещает необоснованные обыски и задержания, а также требует выдачи ордеров на обыск судом при наличии достаточных оснований) свидетельствуют о том, что борьба за защиту конфиденциальности в общественных местах по-прежнему актуальна. Этим летом в одном из процессов суд решил, что геолокационные данные с мобильных телефонов подпадают под действие Конституции, а информация, которую человек желает сохранить в тайне, даже если она оказывается доступна публично, может охраняться Конституцией.

Почему технология распознавания лиц не поддаётся правовому регулированию

В связи с тем, что технология распознавания лиц представляет огромную угрозу, общество не может пустить её регулирование на самотёк. Потенциальная прибыльность подтолкнёт к появлению идей по реализации максимальных возможностей технологии, и отдельные компании будут продвигать свои интересы в этом направлении.

Общество также не может ждать подъёма популистов. Технологию распознавания лиц продолжат «продавать» как часть самых новых и продвинутых приложений и устройств. Apple уже называет Face ID лучшей функцией последнего iPhone. То же самое касается новостных репортажей с идеологической подоплёкой, в которых технологию распознавания лиц провозглашают решением всех проблем.

Наконец, обществу не следует излишне рассчитывать на традиционные методы регулирования. Особенности технологии распознавания лиц не позволяют удержать её в рамках мер, которые определяют законные и незаконные способы применения и пытаются уместить в ней потенциальную полезность для общества и устрашающий фактор для злоумышленников. Это - один их немногих примеров, когда необходимо ввести полный запрет.

На данный момент существует очень немного проектов по контролю технологии распознавания лиц и ещё меньше - по её ограничению. Есть достойные законы о биометрических данных в штатах Иллинойс и Техас, но они придерживаются общепринятой стратегии регулирования, согласно которой субъекты, собирающие и использующие эти данные, должны выполнять ряд базовых информационных практик и протоколов конфиденциальности. Сюда относятся требование получать информированное согласие на сбор биометрических данных, их обязательная защита и ограничение на срок хранения, запрет на их использование с целью получения прибыли, ограничение прав передачи третьим лицам и частные основания для подачи иска в случае нарушения этих норм.

Предлагаемые законы в области распознавания лиц похожи на них. Федеральная комиссия по торговле США рекомендует ввести такой же механизм в отношении технологии: предупреждать человека о её применении, давать ему выбор и честно ограничивать использование его данных. Доклад Electronic Frontier Foundation, в котором упор сделан на проведение этих законов в жизнь, содержит аналогичные, хотя и более глубокие предложения. Например, создать чёткие правила использования, распространения и обеспечения безопасности данных; ввести ограничения на сбор и хранение данных; запрет на включение нескольких видов биометрических данных в одну базу; обязательное уведомление, проведение проверок и независимого надзора. В своём проекте закона о распознавании лиц Center on Privacy & Technology университета Джорджтауна предлагает значительно ограничить доступ правительства к базам лиц, а также использование технологии распознавания лиц в реальном времени.


К сожалению, большинство действующих и предлагаемых требований носят процедурный характер. И в конечном счёте не остановят распространение самой технологии и развитие соответствующей инфраструктуры. Прежде всего нужно отметить ложность некоторых исходных допущений относительно согласия, уведомления и выбора, которые присутствуют в существующих законах. Информированное согласие как механизм регулирования наблюдения и обработки данных полностью бесполезно. Даже если бы людям всецело принадлежало право контролировать свои данные, они бы всё равно не смогли им воспользоваться в полной мере.

И всё же законодатели и сама отрасль пытаются сдвинуться с мёртвой точки. Но в этих нормах, как и в большинстве норм конфиденциальности цифровой эры, есть много пробелов. Одни законы касаются только сбора или хранения данных и не затрагивают то, как они используются. Другие применимы лишь к компаниям или правительству и настолько неоднозначны, что позволяют избежать последствий за различные противоправные действия. И чтобы прочувствовать преимущества технологии распознавания лиц, которую так расхваливают, потребуется больше камер, лучшая инфраструктура и необъятные базы данных.

Будущее технологии распознавания лиц

Технология распознавания лиц открывает безграничные возможности отслеживать информацию о личности и перемещениях человека. А также практически мгновенно сохранять, распространять и анализировать её. Развитие этой технологии в будущем может привести к тому, что конфиденциальность частной информации человека будет постоянно нарушаться. Благополучие человечества возможно лишь в том случае, если будет введён запрет на технологии распознавания лиц, прежде чем эти системы слишком прочно войдут в повседневную жизнь. Иначе людям будет знаком только мир, в котором при каждом появлении в общественном месте их будут автоматически идентифицировать, заносить информацию в профиль и, возможно, использовать её. В таком мире те, кто выступает против технологии распознавания лиц, будут дискредитированы, вынуждены замолчать или устранены.