Настройка статической маршрутизации. Динамическая маршрутизация. Протокол RIP. Протокол OSPF

Маршрутизаторы функционируют в сетях с коммутацией пакетов, где все возможные маршруты уже существуют. Процесс прокладывания пути производится либо вручную администратором (статическая маршрутизация ), либо автоматически маршрутизирующим протоколом (динамическая маршрутизация) .

Маршрутизаторы, зная информацию о пути к некоторым сетям, обмениваются этой информацией с другими устройствами. После таких обновлений все маршрутизаторы будут иметь согласованную информацию о маршрутах к доступным сетям. Процесс обмена обновлениями реализуют протоколы маршрутизации. Таким образом, протоколы маршрутизации разделяют сетевую информацию между маршрутизаторами .

При изменениях в топологии требуется некоторое время (время сходимости или конвергенции ) для согласования информации в таблицах маршрутизации всех маршрутизаторов сети. Время сходимости является важным фактором при выборе протокола маршрутизации.

Маршрутная информация собирается по определенным правилам в ходе реализации алгоритма динамического обмена обновлениями ( update , модификациями) между маршрутизаторами. Протокол маршрутизации должен создавать и поддерживать таблицы маршрутизации , где хранятся пути ко всем доступным сетям назначения, а также извещать другие маршрутизаторы о всех известных ему изменениях в топологии сети, т.е. решать задачу обнаружения сетей .

Совокупность сетей, представленных маршрутизаторами под общим административным управлением, образует автономную систему ( рис. 3.1). Примерами автономных систем являются сети отдельных провайдеров ISP . Автономные системы нумеруются (AS1, AS2, …AS107, …) и в некоторых протоколах ( IGRP , EIGRP ) эти номера используются при конфигурировании.


Рис. 3.1.

В настоящем курсе рассматривается маршрутизация только внутри автономной системы, где работают протоколы внутренней маршрутизации (Interior Gateway Protocols - IGP ), к которым относятся RIP , RIPv2, EIGRP , OSPF , IS-IS . Маршрутизацию между автономными системами производят протоколы внешней маршрутизации ( Exterior Gateway Protocols - EGP ). Примером протокола внешней маршрутизации является протокол BGP , который работает на пограничных маршрутизаторах автономных систем ( рис. 3.1).

Совокупность протоколов маршрутизации приведена в табл. 3.1 , из которой следует, что протоколы динамической маршрутизации, работающие внутри автономных систем, в свою очередь , подразделяются на протоколы вектора расстояния (distance-vector) и протоколы состояния канала (link-state) .

Протоколы вектора расстояния определяют расстояние и направление, т.е. вектор соединения в составной сети на пути к адресату. При использовании протокола вектора расстояния маршрутизаторы посылают всю или часть таблицы маршрутизации соседним (смежным) маршрутизаторам. В таких протоколах как RIP и RIP-2 расстояние выражается в количестве переходов (hop count) в соединении на пути от узла источника к адресату назначения. Обмен обновлениями ( update ) или модификациями происходит периодически , даже если в сети нет никаких изменений, на что тратится значительная часть полосы пропускания. Получив обновление маршрутной информации, маршрутизатор может заново вычислить все известные пути и модернизировать таблицу маршрутизации.

Протоколы состояния канала создают полную картину топологии сети и вычисляют кратчайшие пути ко всем сетям назначения. Если путей с одинаковой метрикой несколько, то выбирается первый из вычисленных. Рассылка обновлений маршрутной информации производится только при изменениях топологии сети . Протоколы состояния канала (или соединения) быстрее реагируют на изменения в сети по сравнению с протоколами вектора расстояния, но при этом требуют больших вычислительных ресурсов.

Когда инкапсулированный в кадр пакет прибывает на входной интерфейс , маршрутизатор декапсулирует его, затем использует таблицу маршрутизации, чтобы определить, по какому маршруту направить пакет, т.е. на какой свой выходной интерфейс передать поступивший пакет . Выходной интерфейс связан с наиболее рациональным маршрутом к адресату назначения. Этот процесс называется коммутацией или продвижением пакета. На выходном интерфейсе пакет инкапсулируется в новый кадр , при этом маршрутизатор добавляет информацию для формирования кадра (см. материалы "Принципы и средства межсетевого взаимодействия").

Маршрутизаторы способны одновременно поддерживать несколько независимых протоколов с разными административными расстояниями (AD) , которые показывают степень достоверности источника маршрута. Чем меньше AD , тем выше достоверность (см. табл. 1.1). В таблицу маршрутизации устанавливаются маршруты, созданные протоколами с наименьшим административным расстоянием.

Определение протоколом маршрутизации наиболее рационального (оптимального) пути производится на основе определенного критерия - метрики . Значение метрики используется при оценке возможных путей к адресату назначения. В настоящем курсе рассматриваются следующие протоколы маршрутизации:

Перечисленные протоколы используют разные параметры метрики.

Различные протоколы маршрутизации используют разные алгоритмы при выборе маршрута, т.е. выходного интерфейса и (или) адреса следующего перехода, на который должен быть передан пакет. Алгоритм и метрика определяются целым рядом решаемых задач, таких как простота, устойчивость , гибкость, быстрая сходимость или конвергенция . Сходимость - это процесс согласования между маршрутизаторами сети информации о доступных маршрутах. При изменениях состояния сети необходимо, чтобы обмен модификациями восстановил согласованную сетевую информацию.

Каждый алгоритм по своему интерпретирует выбор наиболее рационального пути на основе метрики . Обычно меньшее значение метрики соответствует лучшему маршруту . Метрика может базироваться на одном или на нескольких параметрах пути. В протоколах маршрутизации наиболее часто используются следующие параметры метрики:

(Load)
Полоса пропускания (Bandwidth) - способность соединения передавать данные с некоторой скоростью. Например, соединения сети FastEthernet передающие данные со скоростью 100 Мбит/c, предпочтительней каналов Е1 со скоростью 2,048 Мбит/c.
Задержка (Delay) - это длительность времени прохождения пакета от источника до адресата назначения. Задержка зависит от количества промежуточных соединений и их типов, объема буферных устройств маршрутизаторов, сходимости сети и расстояния между узлами.
- определяется количеством информации, загружающей сетевые ресурсы (маршрутизаторы и каналы). Чем больше загрузка, тем больше очереди на обслуживание, тем дольше пакет будет в пути.
Надежность (Reliability) - определяется интенсивностью ошибок на каждом сетевом соединении.
Количество переходов (Hop count) - это количество маршрутизаторов, через которые пакет должен пройти на пути к адресату назначения (число переходов от маршрутизатора к маршрутизатору).
Стоимость (Cost) - обобщенный параметр затрат на передачу пакета к адресату назначения. Иногда стоимость имеет произвольное значение, назначенное администратором.

Наиболее известным в сети Internet протоколом вектора расстояния (distance-vector) является Routing Information Protocol (RIP) , который использует в качестве метрики число переходов ( hop count ) на пути к адресату назначения.

Другим простым протоколом вектора расстояния является Interior Gateway Routing Protocol (IGRP ), который был разработан в корпорации Cisco. Для работы в больших сетях на смену ему пришел протокол Enhanced IGRP (EIGRP) , который включает много особенностей протоколов как типа link-state, так и distance-vector. Поэтому он, по сути, является гибридным протоколом. Однако разработчики фирмы Cisco относят его к протоколам distance-vector.

Протоколы вектора расстояния (RIP, IGRP) периодически рассылают обновления маршрутной информации. У протокола RIP этот период равен 30 сек. При этом обновляются таблицы маршрутизации, которые хранят всю информацию о маршрутах в сети. При изменении в сети маршрутизатор , обнаруживший такое изменение, сразу начинает обмен маршрутной информацией с соседними маршрутизаторами. Этот обмен идет последовательно от маршрутизатора к маршрутизатору с некоторой задержкой, определяемой временем модификации таблиц в каждом маршрутизаторе, а также специальным таймером. Поэтому сходимость (конвергенция) сети, когда все маршрутизаторы будут иметь согласованную информацию о сетевых соединениях, происходит медленно , что является недостатком протоколов вектора расстояния.

Таким образом, протоколы вектора расстоянияRIP характеризуются медленной сходимостью , т.е. длительным временем согласования информации в таблицах маршрутизации при изменениях топологии сети.

Протокол вектора расстояния RIP использует счетчик переходов ( hop count ) в качестве метрики, чтобы определить расстояние до определенного соединения в составной сети. Если существует несколько путей, то RIP выберет путь с наименьшим числом маршрутизаторов или переходов к адресату назначения. Однако выбранный маршрут не всегда является лучшим путем к адресату, поскольку выбранный маршрут с наименьшим числом устройств может характеризоваться меньшей скоростью передачи (более узкой полосой пропускания, меньшей пропускной способностью) по сравнению с альтернативными маршрутами, созданными другими протоколами. Кроме того, RIP не может направлять пакеты далее 15 переходов, поэтому он рекомендован для работы в малых и средних сетях. Рассылка обновлений протоколом первой версии RIPv1 производится в широковещательном режиме ( адрес 255.255.255.255 ).

Протокол первой версии RIPv1 требует, чтобы все устройства в подсети использовали одинаковую маску подсети, т.к. RIP не включает информацию о маске подсети в обновления маршрутизации. Такой метод получил название маршрутизации на основе классов (classful routing) , что ограничивает применение протокола RIPv1 в современных сетях.

Протокол вектора расстояния второй версии RIPVersion 2 (RIPv2 ) обеспечивает бесклассовую маршрутизацию CIDR (Classless Interdomain Routing ), поскольку в обновления маршрутизации включена информация о маске подсети (о префиксе). При этом внутри одной сети могут существовать подсети с масками переменной длины (Variable-Length Subnet Mask - VLSM ). В обновления также включена адресная информация о шлюзах по умолчанию. Рассылка обновлений протоколом версии RIPv2 производится в многоадресном режиме (

Крупные сети, такие как Internet, организованы как множество автономных систем (autonomous system – AS). Каждая из них обычно администрируется как отдельная сетевая структура, поэтому использование одного протокола маршрутизации в таких сетях маловероятно. Как мы уже знаем маршрутизатор, исходя из IP-адреса, указанного в заголовке пакета, в соответствии с своей таблицей маршрутизации определяет путь для передаваемых данных.
Таблицы маршрутизации задаются как вручную (статическая маршрутизация), так и динамически (динамическая маршрутизация).

Статическая маршрутизация

Так как статические маршруты настраиваются вручную, то любые изменения сетевой топологии требуют участия администратора для корректировки таблиц маршрутизации. В рамках маленькой сети такие изменения незначительны и происходят крайне редко. И наоборот, в крупных сетях корректировка таблиц маршрутизации может потребовать огромных затрат времени.
Если доступ к сети может быть получен только по одному направлению, то указание статического маршрута может оказаться вполне достаточным. Такой тип сети носит название тупиковой сети (stub network). Для настройки статической маршрутизации на роутере необходимо внести запись о сети, которую может достигнуть пакет, отправленный в определенный интерфейс.
Для этого необходимо в конфигурационном режиме ввести команду ip route, в которой указываем IP-адрес и маску сети назначения, тип и номер интерфейса, через который эта сеть может быть достигнута

R1(config)# ip route

Пример: Для сети, изображенной на рисунке необходимо настроить маршрутизацию таким образом, чтобы роутер (R1) пересылал пакеты в сети 92.154.228.0/22 и 92.154.232.0/22

Решением будет указанием 2 команд:

R1(config)# ip route 92.154.228.0 255.255.252.0 Se 1/0
R1(config)# ip route 92.154.232.0 255.255.252.0 Se 1/0

Для проверки конфигурации набираем команду show ip route

R1# show ip route
Codes: C — connected, S — static, I — IGRP, R — RIP, M — mobile,
D — EIGRP, EX — EIGRP external, O — OSPF,

C 92.154.224.0/22 is directly connected, FastEthernet0/0
S 92.154.228.0/22 is directly connected, Serial1/0
S 92.154.232.0/22 is directly connected, Serial1/0
C 92.154.252.0/30 is directly connected, Serial1/0

Как видно из вывода команды кроме подсоединенных сетей появились 2 записи по которым роутер будет все пришедшие к нему пакеты для сетей 92.154.228.0/22 и 92.154.232.0/22 маршрутизировать на интерфейс Serial1/0.

Для того чтобы пакеты из этих сетей уходили обратно необходимо подобным образом настроить роутеры R2 и R3

R2(config)# ip route 92.154.224.0 255.255.252.0 serial 1/0
R2(config)# ip route 92.154.232.0 255.255.252.0 serial 1/1

R3(config)# ip route 92.154.224.0 255.255.252.0 serial 1/0
R3(config)# ip route 92.154.228.0 255.255.252.0 serial 1/0

Еще настроить статическую маршрутизацию можно указав в команде ip route IP-адрес интерфейса следующего транзитного маршрутизатора вместо типа и номера интерфейса роутера, через который может быть достигнута сеть назначения. Например конфигурация роутера R1 для нашего примера будет:

R1(config)# ip route 92.154.228.0 255.255.252.0 92.154.252.2

R1(config)# ip route 92.154.232.0 255.255.252.0 92.154.252.2

R1# show ip route static
92.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
S 92.154.228.0/22 via 92.154.252.2
S 92.154.232.0/22 via 92.154.252.2

Для отмены статического маршрута используется команда no ip route

Динамическая маршрутизация

При динамической маршрутизации происходит обмен маршрутной информацией между соседними маршрутизаторами, в ходе которого они сообщают друг другу, какие сети в данный момент доступны через них. Информация обрабатывается и помещается в таблицу маршрутизации. К наиболее распространенным внутренним протоколам маршрутизации относятся:
RIP (Routing Information Protocol) — протокол маршрутной информации
OSPF (Open Shortest Path First) — протокол выбора кратчайшего маршрута
EIGRP (Enhanced Interior Gateway Routing Protocol) — усовершенствованный протокол маршрутизации внутреннего шлюза
IGRP (Interior Gateway Routing Protocol) — протокол маршрутизации внутреннего шлюза

Протокол динамической маршрутизации выбирается исходя из множества предпосылок (скорость конвергенции, размер сети, задействование ресурсов, внедрение и сопровождение и др.) поэтому прежде всего, во внимание принимаются такие характеристики, как размер сети, доступная полоса пропускания, аппаратные возможности процессоров маршрутизирующих устройств, модели и типы маршрутизаторов.
Большинство алгоритмов маршрутизации может быть отнесено к одной из двух категорий: дистанционно-векторные протоколы (RIPv1, RIPv2, RIPng, IGRP, EIGRP, EIGRP for IPv6) и протоколы с учетом состояния канала (OSPFv2, OSPFv3, IS-IS, IS-IS for IPv6).

Routing Information Protocol (RIP)

Протокол RIP является дистанционно-векторным протоколом маршрутизации. Протоколы динамической маршрутизации определяют оптимальный путь к необходимой сети на основании значения, которое называется метрикой. В качестве метрики в протоколе RIP используется количество транзитных устройств или переходов (hop count – прыжок пакета) из одной сетевой структуры в другую. Максимальное число таких переходов равно 15. А все сети, число переходов до которых превышает 15, считаются недостижимыми. Маршрутизаторы, на которых настроен протокол RIP, периодически (по умолчанию каждые 30 с) пересылают полные анонсы маршрутов, в которых содержится информация обо всех известных им сетях.

Работа протокола RIP

Рассмотрим процесс обработки маршрутизатором R1 маршрута к сети 172.30.22.0 Протокол RIP настроен на обоих роутерах R1 и R2 во все непосредственно подсоединенные сети.

Сеть 172.30.22.0 напрямую подключена к маршрутизатору R2, поэтому счетчик переходов для нее равен 0
Когда R2 пересылает анонс маршрута к такой сети, он устанавливает значение счетчика равным 1. Получив анонс от R2, маршрутизатор R1 заносит маршрут к сети 172.30.22.0 в свою таблицу маршрутизации и считает этот маршрут оптимальным, поскольку других маршрутов у него нет.
В качестве исходящего интерфейса для нового маршрута R1 использует S0/0, поскольку анонс был получен через него.
В качестве адреса следующего транзитного устройства на маршруте использует 172.30.1.2, поскольку анонс маршрутизации был получен от отправителя с этим IP-адресом.

Из анонсов маршрутов исключаются некоторые маршруты для того чтобы исключить кольцевые маршруты и зацикливание пакетов. Кольцевой маршрут образуется когда два или более маршрутизаторов пересылают друг другу пакеты по замкнутому пути при котором пакеты не достигают нужного получателя. Кольцевой маршрут будет действовать до тех пор, пока маршрутизаторы в сети не обновят свои таблицы маршрутизации. Для избежания кольцевых маршрутов, маршрутизаторы рассылают информацию об отказавшем маршруте со специальной метрикой, равной бесконечности (для протокола RIP это значение равно 16). Такая рассылка называется корректировкой маршрута.
Еще один механизм предотвращения кольцевых маршрутов – таймер хранения информации. Когда устройство получает откорректированный маршрут (с максимальной метрикой), свидетельствующий о том, что этот маршрут недоступен, запускается таймер для такого маршрута. Стандартное значение таймера хранения информации равно 180 с. До тех пор пока не истечет таймер, новая информация о маршруте не принимается устройством, но информация от соседнего маршрутизатора, который ранее анонсировал исчезнувший маршрут, принимается и обрабатывается до истечения таймера хранения информации.

Пример сети и ее настройки с использованием протокола RIP

Для настройки на маршрутизаторе протокола RIP необходимо ввести команду router rip. Далее в режиме конфигурирования протокола маршрутизации нужно ввести команду network, содержащую номер сети, подключенной непосредственно к роутеру, информацию о которой следует разглашать в рассылках. Если используется бесклассовая адресация, необходимо включить 2 версию протокола RIP командой version 2

Router1(config)# router rip
Router1(config-router)# network 92.154.224.0
Router1(config-router)# network 92.154.252.0
Router1(config-router)# version 2

Router2(config)# router rip
Router2(config-router)# network 92.154.252.0
Router2(config-router)# network 92.154.252.4
Router2(config-router)# network 92.154.228.0
Router2(config-router)# version 2

Router3(config)# router rip
Router3(config-router)# network 92.154.252.4
Router3(config-router)# network 92.154.232.0
Router3(config-router)# version 2

Проверяем таблицу маршрутизации командой

Router1# show ip route rip


R 92.154.228.0/22 via 92.154.252.2, 00:00:20, Serial1/0
R 92.154.232.0/22 via 92.154.252.2, 00:00:20, Serial1/0
R 92.154.252.4/30 via 92.154.252.2, 00:00:20, Serial1/0

Следует заметить, что соседние роутеры будут обмениваться таблицами маршрутизации RIP только в том случае, если протокол RIP настроен с обеих сторон.

OSPF

Протокол OSPF является протоколом маршрутизации с учетом состояния каналов. В этом классе протоколов в качестве метрики используется стоимость маршрута, которая рассчитывается на основе пропускной способности каждого канала на пути от маршрутизатора до необходимой сети. Поэтому процесс работы протокола OSPF условно можно разделить на три этапа: обнаружение соседних маршрутизаторов, обмен базами маршрутов и расчет оптимальных маршрутов.
Устройства, подключенные к одному каналу и участвующие в процессе обмена информацией протокола OSPF называются соседними маршрутизаторами. Для обнаружения OSPF-устройств маршрутизаторы рассылают многоадресатные Hello-пакеты через все интерфейсы, на которых настроен протокол OSPF. В запросе содержится следующая информация:
идентификатор маршрутизатора-отправителя Router ID – RID,
идентификатор зоны OSPF Area ID,
Hello-интервал,
интервал обнаружения неработоспособности устройства (dead interval),
приоритет маршрутизатора (router priority),
идентификатор RID выделенного маршрутизатора (designated router DR),
идентификатор RID резервного выделенного маршрутизатора (backup designated router BDR)
список соседних устройств, обнаруженных маршрутизатором-отправителем.

Каждому маршрутизатору присваивается уникальный номер – идентификатор маршрутизатора RID. Он представляет собой 32-битное число, поэтому для удобства в качестве идентификатора используют IP-адрес. Протоколом автоматически выбирается самый старший IP-адрес из всех адресов на интерфейсах устройства (в т.ч. виртуальных).

Например, маршрутизатор «А» получает Hello-сообщение от маршрутизатора «Б». Устройству «А» нужно уведомить маршрутизатор «Б» о том, что сообщение было получено, поэтому маршрутизатор «А» добавляет идентификатор RID маршрутизатора «Б» в свое следующее (и все последующие) Hello-сообщение. Аналогично, когда маршрутизатор «Б» получит Hello-сообщение, он добавит идентификатор RID устройства «А» в свои последующие Hello-сообщения.
Когда маршрутизатор обнаруживает свой идентификатор RID во входящем Hello-сообщении, он считает, что со смежным устройством был установлен двусторонний канал. После этого маршрутизаторы проверяют базовые настройки протокола друг у друга, содержащиеся в Hello-сообщениях: IP-адрес, маску подсети, интервал рассылки Hello-сообщений, интервал обнаружения неработоспособности соседнего устройства (dead interval), идентификатор зоны OSPF (area ID) и др. Настройки должны совпадать, иначе протокол работать не будет.
После проверки, если настройки совпадают, маршрутизаторы могут обмениваться анонсами состояния каналов (Link-State Advertisements – LSA).
После установления двустороннего канала маршрутизаторы продолжают периодически обмениваться Hello-сообщениями. Если связь отсутствуют в течение времени, которое определяется dead-интервалом, то считается, что связь с соседним устройством потеряна. Стандартно в протоколе OSPF интервал рассылки Hello-сообщений равен 10 с, dead-интервал – 40 с.
В анонсах LSA содержится подробная информация о топологии сети. Процесс рассылки этих анонсов называется лавинной рассылкой (flooding), при которой маршрутизаторы пересылают анонсы LSA своим соседям, которые, в свою очередь, рассылают их своим соседям, и так до тех пор, пока все устройства в сети не получат информацию из анонса. Анонсы LSA рассылаются периодически (по умолчанию один раз в 30 мин). По окончании процесса рассылки у всех маршрутизаторов в домене маршрутизации появится общая одинаковая информация о сети. Информация хранится в виде структуры, называемой базой данных состояния каналов link-state database – LSDB.
Когда у каждого маршрутизатора в домене маршрутизации есть идентичная копия базы LSDB, то используется технология протоколов маршрутизации с учетом состояния каналов. Устанавливаются маршруты в таблицу IP-маршрутизации: создаются записи, содержащие адрес подсети, маску, выходной интерфейс и адрес следующего транзитного устройства (next-hop). Для выполнения данной задачи используется алгоритм поиска первого кратчайшего пути Дейкстры.
Протокол OSPF выбирает маршрут между маршрутизатором и какой-либо сетью с наименьшей стоимостью. С каждым интерфейсом на маршруте связано некоторое значение стоимости. Стоимость всех интерфейсов (каналов), через которые пролегает путь к сети, суммируется и выбирается путь, стоимость которого минимальна. Таким образом, каждый маршрутизатор строит маршруты подобно древовидной структуре, в корне которой ставит себя.
Для настройки протокола OSPF используются команда router ospf, которая содержит 16-битный идентификатор процесса от 1 до 65535 и команда network, содержащая номер сети, инверсную маску (wildcard mask) и идентификатор зоны.

Рассмотрим пример настройки протокола OSPF для сети, изображенной выше.

Router1(config)# route ospf 1
Router1(config-router)# network 92.154.252.0 0.0.0.3 area 0
Router1(config-router)# network 92.154.224.0 0.0.3.255 area 0

Router2(config)# router ospf 1
Router2(config-router)# network 92.154.252.0 0.0.0.3 area 0
Router2(config-router)# network 92.154.252.4 0.0.0.3 area 0
Router2(config-router)# network 92.154.228.0 0.0.3.255 area 0

Router3(config)# router ospf 1
Router3(config-router)# network 92.154.252.4 0.0.0.3 area 0
Router3(config-router)# network 92.154.232.0 0.0.3.255 area 0

Проверяем результаты командой Router1# show ip route ospf

92.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
O 92.154.228.0/22 via 92.154.252.2, 00:00:26, Serial1/0
O 92.154.232.0/22 via 92.154.252.2, 00:00:26, Serial1/0
O 92.154.252.4/30 via 92.154.252.2, 00:00:26, Serial1/0

Для просмотра списка соседних маршрутизаторов на которых настроен протокол OSPF, и информации о них используется команда show ip ospf neighbor

Router1#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
92.154.252.5 0 FULL/ — 00:00:37 92.154.252.2 Serial1/0

Для функционирования протокола OSPF важно чтобы хотя бы один интерфейс маршрутизатора, включенный в таблицу маршрутизации протокола OSPF, должен находиться в поднятом (up) состоянии. В противном случае OSPF отключится и последующее включение возможно будет только вручную. Для избежания такой проблемы в сети необходимо настроить и включить в протокол OSPF виртуальный интерфейс loopback.
Для настройки интерфейса loopback используется команда interface loopback, после указывается номер виртуального интерфейса, например:

Router(config)# interface loopback 0
Router(config-if)# ip add 1.1.1.1 255.255.255.255

Типы маршрутизаторов OSPF

Четыре различных типа маршрутизаторов OSPF соответствуют иерархической структуре маршрутизации, применяемой в OSPF. Каждый маршрутизатор в этой иерархии выполняет уникальную роль и обладает набором свойственных только ему характеристик. На схеме показана типичная сеть OSPF, в которой несколько областей содержат маршрутизаторы OSPF разных типов.

Общее описание маршрутизаторов OSPF

Граничные маршрутизаторы области

Маршрутизаторы ABR подключены к нескольким областям OSPF, поэтому количество маршрутизаторов в сети зависит от количества областей. Маршрутизатор ABR имеет по одной базе данных для каждой области, информацию которой он суммирует, а затем передает в опорную область для распределения по другим областям.

Граничные маршрутизаторы автономной системы

Маршрутизаторы ASBR соединены с несколькими автономными системами и обмениваются маршрутной информацией с маршрутизаторами, находящимися в другой автономной системе. В маршрутизаторах ASBR одновременно эксплуатируются протокол OSPF и другой маршрутизирующий протокол, такой как RIP или ВGР. Маршрутизаторы ASBR обрабатывают информацию о внешних маршрутах.

Маршрутизаторы опорной области

Маршрутизаторами опорной области (Backbone Router - BR) называются маршрутизаторы, интерфейсы которых соединяют их только с опорной областью. Они не имеют интерфейсов, подключенных к другим областям OSPF.

Статическая маршрутизация, альтернатива динамической - это процесс, в котором администратор системной сети вручную настраивал сетевые маршрутизаторы со всей информацией, необходимой для успешной пересылки пакетов. Администратор создает в каждом устройстве, помещая записи для каждой сети, которая может быть назначением. Статические пути передачи данных для сетевых маршрутов неизменяемы.

Определение

Статический способ — это управляемый сетевым администратором метод сетевой маршрутизации, который заключается в ручной настройке и выборе сетевого маршрута. Используется в сценариях, где сетевые параметры и среда должны оставаться постоянными.

Маршрутизация является одной из наиболее важных процедур передачи данных. Это гарантирует, что данные перемещаются из одной сети в другую с оптимальной скоростью и минимальной задержкой, и что ее целостность сохраняется в этом процессе.

В широком смысле маршрутизация выполняется двумя разными способами:

  • Динамическая — периодически обновляет свою таблицу маршрутизации путями и их стоимостью/метрикой, принимая оптимальные решения на основе изменения сетевых рабочих условий.
  • Статическая — считается простейшей формой этого процесса, выполняет правила маршрутизации с предварительно настроенными путями передачи данных в таблице, которые могут быть изменены вручную только администраторами.

Статические маршруты обычно используются в тех ситуациях, когда выбор ограничен или существует только один доступный по умолчанию путь. Кроме того, статическая методика может использоваться, если есть лишь несколько устройств для настройки маршрута, и в будущем не возникнет необходимость его менять.

Разновидности маршрутизации

Устройство может использовать три пути для изучения маршрутов:

    Статическая маршрутизация — это метод, с помощью которого администратор вручную добавляет пути передачи информации в электронную таблицу/базу данных.

    Маршрутизация по умолчанию — это методика, где все маршрутизаторы настроены на отправку всех пакетов по одному пути. Это очень полезный метод для небольших сетей или для сетей с единой точкой входа и выхода. Он обычно используется в дополнение к статическому и динамическому способам.

    Динамическая методика — это способ, при котором протоколы и алгоритмы используются для автоматического распространения информации о маршрутизации. Это наиболее распространенный и самый сложный метод.

Классификация протоколов

Протоколы маршрутизации классифицируются как протоколы внутренних шлюзов (IGP) или внешние шлюзовые протоколы (EGP). IGP используются для обмена информацией о процессе в межсетевых сетях, которые попадают под единый административный домен (также называемый автономными системами). EGP используются для обмена информацией между различными автономными системами. Обычными примерами IGP являются протокол маршрутизации (RIP), расширенный протокол внутренних шлюзов (EIGRP) и Open Shortest Path First (OSPF).

Протокол маршрутизации использует программное обеспечение и алгоритмы для определения оптимальной передачи сетевых данных и путей связи между сетевыми узлами. Также известен как политика маршрутизации. Они существенно облегчают взаимодействие маршрутизаторов, а также общую топологию сети.

В большинстве (IP) используются следующие протоколы маршрутизации:

    Протокол маршрутизации (RIP) и протокол маршрутизации внутренних шлюзов (IGRP): обеспечивают процесс для внутренних шлюзов через протоколы маршрутных или дистанционных векторов. RIP используется для определения кратчайшего пути от источника к месту назначения. Это позволяет передавать данные на высокой скорости в кратчайшие сроки.

    Open Shortest Path First (OSPF): обеспечивает процесс для внутренних шлюзов через протоколы маршрутизации состояния канала.

  • Протокол пограничного шлюза (BGP) v4: предоставляет общедоступный протокол маршрутизации через внешнее взаимодействие со шлюзом.

Как настроить статическую маршрутизацию Cisco

Чтобы настроить статический маршрут, устройство должно находиться в режиме глобальной конфигурации.

Код для командной строки: ip route prefix mask{адрес|интерфейс}[расстояние]. Разъясним основные составляющие кода:

    сеть — целевая сеть;

    mask — маска подсети для этой сети;

    адрес — IP-адрес маршрутизатора следующего перехода;

    интерфейс — интерфейс оборудования исходящего трафика;

    расстояние — административное расстояние маршрута.

Административное расстояние используется для применения своего рода приоритизации на статических маршрутах, так что разные пути к данному месту назначения будут следовать определенной схеме активации. Административное расстояние представляет собой целое число от 0 до 255, где 0 указывает путь первого приоритета, а 255 означает, что трафик не может проходить через этот маршрут. По умолчанию административное расстояние непосредственно подключенных интерфейсов равно 0, а для статических маршрутов 1.

Пример статической маршрутизации:

ip route 10.0.0.0 255.0.0.0 131.108.3.4 110, где 10.0.0.0 — целевая сеть, 255.0.0.0 — маска подсети, а 131.108.3.4 — следующий скачок для используемого маршрутизатора, 110 — административная дистанция.

Пример создания статического маршрута

В качестве примера того, когда требуется статический маршрут, рассмотрим следующий случай:

    Ваш основной доступ в интернет осуществляется через кабельный модем для интернет-провайдера.

    У вас есть маршрутизатор ISDN в вашей домашней сети для подключения к компании, в которой вы работаете. Адрес этого устройства в вашей локальной сети 192.168.1.100.

    Сетевой адрес вашей компании 134.177.0.0.

    При настройке статической маршрутизации cisco создаются два неявных статических маршрута.

    Путь передачи данных по умолчанию был создан с вашим провайдером в качестве шлюза, а второй статический маршрут создается в локальной сети для всех адресов 192.168.1.x. В этой конфигурации при попытке доступа к устройству в сети 134.177.0.0 маршрутизатор перенаправляет запрос поставщику услуг интернета.

    В этом случае необходимо определить статический маршрут, указав прибору, что 134.177.0.0 должен быть доступен через маршрутизатор ISDN по адресу 192.168.1.100.

    Статические и динамические маршрутизаторы

    Для эффективной работы в межсетевой сети маршрутизаторы должны иметь информацию о других идентификаторах или настраиваться с использованием пути по умолчанию. В больших сетях таблицы маршрутизации должны поддерживаться так, чтобы трафик всегда перемещался по оптимальным путям следования. От того, как поддерживаются электронные таблицы, определяется различие между статической и динамической маршрутизациями.

    Статическая маршрутизация

    Устройство с вручную настроенными таблицами маршрутизации пользователям известно как статическое. Сетевой администратор, владеющий топологией межсетевой сети, вручную создает и обновляет таблицу путей следования информации, программируя все маршруты. Статические маршрутизаторы могут хорошо работать для небольших межсетевых сетей, но не масштабируются для больших или динамически изменяющихся межсетевых сетей из-за их ручного администрирования.

    Хорошим примером статического устройства является многосетевой компьютер под управлением Windows 2000 (компьютер с несколькими сетевыми интерфейсами). Создание статической маршрутизации в Windows 2000 так же просто, как установка нескольких карт сетевого интерфейса, настройка TCP/IP и включение IP-маршрутизации.

    Динамическая маршрутизация

    Прибор с динамически настроенными таблицами известен как динамический. Динамическая маршрутизация состоит из таблиц, которые создаются и поддерживаются автоматически через постоянную связь между устройствами. Это сообщение облегчается протоколом маршрутизации, серией периодических или по требованию сообщений, содержащих информацию, которой обмениваются маршрутизаторы. Динамические устройства, за исключением их первоначальной конфигурации, требуют незначительного постоянного обслуживания и могут масштабироваться до более крупных межсетевых сетей.

    Динамическая маршрутизация является отказоустойчивой. Динамические пути передачи данных, полученные от других устройств, имеют ограниченный срок службы.
    Возможность масштабирования и восстановления от межсетевых ошибок делает этот способ лучшим выбором для средних и больших межсетевых сетей.

    Динамическая методика — это обеспечивающий оптимальную маршрутизацию данных. В отличие от статической, динамическая позволяет маршрутизаторам выбирать пути в соответствии с изменениями логической сети в режиме реального времени. В динамическом процессе протокол, работающий на устройстве, отвечает за создание, обслуживание и обновление электронной таблицы данных. В статической маршрутизации все эти задания выполняются администратором системы вручную.

    Динамическая методика использует множество различных алгоритмов и протоколов. Наиболее популярными являются протокол маршрутизации (RIP) и Open Shortest Path First (OSPF).

    Стоимость маршрутизации является критическим фактором для всех организаций. Наименее дорогостоящая технология этого процесса обеспечивается динамической методикой, которая автоматизирует изменения таблиц и обеспечивает наилучшие пути для стабильной передачи данных.

    Операции протокола динамической маршрутизации можно объяснить следующим образом:

    • Маршрутизатор предоставляет и получает сообщения на интерфейсах устройства.

      Получаемые сообщения и информация используются совместно другими приборами, которые используют точно такой же протокол.

    Маршрутизаторы меняют информацию о маршрутизации для обнаружения данных об удаленных сетях. Всякий раз, когда устройство находит изменение в топологии, протокол маршрутизации вносит изменение топологии на других приборах.

    Динамическая маршрутизация легко настраивается в больших сетях и более интуитивно понятна при выборе наилучшего пути передачи информации, определении изменений и обнаружении удаленных сетей. Однако, поскольку маршрутизаторы обмениваются обновлениями, они потребляют больше полосы пропускания, чем в статической методике. Процессоры и операционная система оборудования могут также столкнуться с дополнительными нагрузками в результате более сложной работы протоколов. Динамическая маршрутизация менее безопасна, чем статическая.

    Сравнительный анализ

    Статическая маршрутизация cisco не является протоколом маршрутизации. Это просто процесс ручного ввода маршрутов в электронную таблицу данных устройства через файл конфигурации, который загружается при запуске устройства. В качестве альтернативы эти пути передачи данных могут быть введены администратором сети, который настраивает их вручную. Поскольку эти настроенные вручную маршруты не изменяются после их настройки, они называются статическими.

    Статическая методика — это простейшая форма маршрутизации, но это кропотливый ручной процесс. Используйте данный метод, когда у вас очень мало устройств для настройки (менее 5), и вы уверены, что пути передачи информации, вероятно, никогда не изменятся.

    Статическая маршрутизация cisco packet tracer также не обрабатывает случайные сбои во внешних сетях, потому что любой маршрут, который настроен вручную, должен быть обновлен или перенастроен вручную, чтобы исправить или восстановить потерянные соединения.

    Протоколы динамической маршрутизации поддерживаются программными приложениями, запущенными на принимающем/передающем устройстве (маршрутизаторе).

    Устройство, использующее динамическую методику, распознает маршруты для всех сетей, которые напрямую к нему подключены. Затем маршрутизатор изучает данные других приборов, которые выполняют один и тот же протокол (RIP, RIP2, EIGRP, OSPF, IS-IS, BGP). Затем каждый маршрутизатор сортирует список маршрутов и выбирает один или несколько оптимальных путей для каждого сетевого адресата.

    Затем протоколы динамической маршрутизации распространяют полученные данные на другие устройства, работающие с одним протоколом, тем самым расширяя информацию о том, какие сети существуют и могут быть достигнуты. Это дает динамическим протоколам возможность адаптироваться к изменениям логической топологии сети или сбоям роутера статической маршрутизации.

    Плюсы и минусы

    Статическая маршрутизация имеет следующие преимущества:

      Никакой дополнительной обработки и дополнительных ресурсов, как в случае динамических протоколов маршрутизации.

      Отсутствие дополнительных требований к пропускной способности, вызванных передачей чрезмерных пакетов для процесса обновления таблицы маршрутизации.

      Дополнительная безопасность обуславливается путем ручного ввода или отклонения путей передачи информации в определенные сети.

      Настройка статической маршрутизации более безопасна.

      Для использования статических маршрутов нет накладных расходов. С динамическими пропускная способность сети используется для связи доступных сетей между маршрутизаторами. При использовании статических маршрутов, поскольку сетевой администратор кодирует данные, устройствам не нужно передавать информацию о маршрутизации.

      Статическую маршрутизацию проще настроить для небольшой сети. Предположим, что у вас есть только два устройства и необходимо настроить сообщение между ними. Для этого потребуется настроить только два оператора маршрута — по одному на каждом маршрутизаторе. С динамическим протоколом, таким как RIP, например, пришлось бы вводить два сетевых оператора на каждом приборе.

      Статические маршруты не требуют каких-либо существенных ресурсов маршрутизатора. Протокол динамической маршрутизации, такой как OSPF, может потребовать значительных ресурсов для расчета кратчайшего пути по сети при наличии большого количества подключенных устройств.

    К недостаткам относятся следующие:

      Сетевые администраторы должны хорошо знать всю чтобы правильно настроить пути передачи данных.

      Изменения топологии требуют ручной настройки статической маршрутизации cisco packet tracer для всех устройств, что очень трудоемко.

      Статические маршруты не масштабируются по мере роста сети. Это связано с тем, что все они настраиваются администратором вручную.

      При динамической методике ручное вмешательство отсутствует, и трафик маршрутизируется автоматически всякий раз, когда в сети происходит отключение. Также он достаточно масштабируемый и легко управляемый.

    В чем разница между статической и динамической маршрутизацией?

    Статическая IP-маршрутизация — это когда вы статически настраиваете устройство для отправки трафика для определенных пунктов назначения в предварительно сконфигурированных направлениях. Динамический способ — это когда вы используете протокол маршрутизации, такой как OSPF, ISIS, EIGRP и или BGP, чтобы выяснить, какой тип трафика должен пройти. В реальном мире очень мало ситуаций, когда используется только один из двух методов. Типичная сеть будет использовать динамический протокол OSPF для определения оптимальных маршрутов внутри предприятия, BGP — для определения лучших точек выхода для остальной части интернета и статическую маршрутизацию для отправки специфического трафика по выделенным путям.

    IP-адресация и маршрутизация: как это работает?

    Маршрутизаторы, чтобы иметь возможность передавать пакеты в конечный пункт назначения, должны поддерживать таблицу маршрутизации, в которой хранится вся необходимая информация, содержащая комбинацию сетей и интерфейсов вывода.

    Каждый раз, когда устройство получает пакет, он проверяет IP-адрес получателя и пытается найти, просмотрев в своей электронной таблице данных возможный путь следования информации к этому IP-адресу. Маршрутизаторы не отправляют широковещательные рассылки в поиске удаленных сетей: если сеть не указана в таблице, прибор просто отбрасывает пакеты.

    Когда использовать маршрутизацию по умолчанию

    Маршрутизация по умолчанию используется только в сетях-заглушках. Stub — это сети, которые имеют только один интерфейс вывода, и все, проходящее через эти сети, должно пересекать единую точку выхода.

    Вместо того, чтобы большое количество статических маршрутов указывало на удаленные сети через один выходной интерфейс, настраивается один путь следования по умолчанию, который соответствует всем возможным маршрутам.

    Использование административных расстояний

    По умолчанию для статических маршрутов административное расстояние составляет 1. AD используются для определения приоритетов. Для разных маршрутов в конкретной целевой сети могут быть назначены разные веса, так что один из путей передачи данных используется в приоритете. Маршруты с одинаковой весовой нагрузкой разделяют трафик.

Динамическая маршрутизация

Статическая маршрутизация не подходит для больших, сложных сетей потому, что обычно сети включают избыточные связи, многие протоколы и смешанные топологии. Маршрутизаторы в сложных сетях должны быстро адаптироваться к изменениям топологии и выбирать лучший маршрут из многих кандидатов.

IP сети имеют иерархическую структуру. С точки зрения маршрутизации сеть рассматривается как совокупность автономных систем. В автономных подсистемах больших сетей для маршрутизации на остальные автономные системы широко используются маршруты по умолчанию.

Динамическая маршрутизация может быть осуществлена с использованием одного и более протоколов. Эти протоколы часто группируются согласно того, где они используются. Протоколы для работы внутри автономных систем называют внутренними протоколами шлюзов (interior gateway protocols (IGP)), а протоколы для работы между автономными системами называют внешними протоколами шлюзов (exterior gateway protocols (EGP)). К протоколам IGP относятся RIP, RIP v2, IGRP, EIGRP, OSPF и IS-IS. Протоколы EGP3 и BGP4 относятся к EGP. Все эти протоколы могут быть разделены на два класса: дистанционно-векторные протоколы и протоколы состояния связи.

Маршрутизаторы используют метрики для оценки или измерения маршрутов. Когда от маршрутизатора к сети назначения существует много маршрутов, и все они используют один протокол маршрутизации, то маршрут с наименьшей метрикой рассматривается как лучший. Если используются разные протоколы маршрутизации, то для выбора маршрута используется административные расстояния, которые назначаются маршрутам операционной системой маршрутизатора.

RIP использует в качестве метрики количество переходов (хопов). EIGRP использует сложную комбинацию факторов, включающую полосу пропускания канала и его надёжность.

Результаты работы маршрутизирующих протоколов заносятся в таблицу маршрутов, которая постоянно изменяется при смене ситуации в сети. Рассмотрим типичную строку в таблице маршрутов, относящуюся к динамической маршрутизации

R 192.168.14.0/24 via 10.3.0.1 00:00:06 Serial0

Здесь R определяет протокол маршрутизации. Так R означает RIP, а O – OSPF и т. д. Запись означает, этот маршрут имеет административное расстояние 120 и метрику 3. Эти числа маршрутизатор использует для выбора маршрута. Элемент 00:00:06 определяет время, когда обновилась данная строка. Serial0 это локальный интерфейс, через который маршрутизатор будет направлять пакеты к сети 192.168.14.0/24 через адрес 10.3.0.1.

Для того чтобы динамические протоколы маршрутизации обменивались информацией о статических маршрутах, следует осуществлять дополнительное конфигурирование.

Дистанционно-векторная маршрутизация

Эта маршрутизация базируется на алгоритме Белмана-Форда. Через определённые моменты времени маршрутизатор передаёт соседним маршрутизаторам всю свою таблицу маршрутизации. Такие простые протоколы как RIP и IGRP просто распространяют информацию о таблицах маршрутов через все интерфейсы маршрутизатора в широковещательном режиме без уточнения точного адреса конкретного соседнего маршрутизатора.

Соседний маршрутизатор, получая широковещание, сравнивает информацию со своей текущей таблицей маршрутов. В неё добавляются маршруты к новым сетям или маршруты к известным сетям с лучшей метрикой. Происходит удаление несуществующих маршрутов. Маршрутизатор добавляет свои собственные значения к метрикам полученных маршрутов. Новая таблица маршрутизации снова распространяется по соседним маршрутизаторам (см. рис.1).

font-size:12.0pt;line-height:125%">Рис.1. Дистанционно-векторная маршрутизация.

Протоколы состояния связи

Эти протоколы предлагают лучшую масштабируемость и сходимость по сравнению с дистанционно-векторными протоколами. Протокол базируется на алгоритме Дейкстры, который часто называют алгоритмом «кратчайший путь – первым» (shortest path first (SPF)). Наиболее типичным представителем является протокол OSPF (Open Shortest Path First).

Маршрутизатор берёт в рассмотрение состояние связи интерфейсов других маршрутизаторов в сети. Маршрутизатор строит полную базу данных всех состояний связи в своей области, то есть имеет достаточно информации для создания своего отображения сети. Каждый маршрутизатор затем самостоятельно выполняет SPF-алгоритм на своём собственном отображении сети или базе данных состояний связи для определения лучшего пути, который заносится в таблицу маршрутов. Эти пути к другим сетям формируют дерево с вершиной в виде локального маршрутизатора.

Маршрутизаторы извещают о состоянии своих связей всем маршрутизаторам в области. Такое извещение называют LSA (link-state advertisements).

В отличие от дистанционно-векторных маршрутизаторов, маршрутизаторы состояния связи могут формировать специальные отношения со своими соседями.

Имеет место начальный наплыв LSA пакетов для построения базы данных состояний связи. Далее обновление маршрутов производится только при смене состояний связи или, если состояние не изменилось в течение определённого интервала времени. Если состояние связи изменилось, то частичное обновление пересылается немедленно. Оно содержит только состояния связей, которые изменились, а не всю таблицу маршрутов.

Администратор, заботящийся об использовании линий связи, находит эти частичные и редкие обновления эффективной альтернативой дистанционно-векторной маршрутизации, которая передаёт всю таблицу маршрутов через регулярные промежутки времени.

Протоколы состояния связи имеют более быструю сходимость и лучшее использование полосы пропускания по сравнению с дистанционно-векторными протоколами. Они превосходят дистанционно-векторные протоколы для сетей любых размеров, однако имеют два главных недостатка: повышенные требования к вычислительной мощности маршрутизаторов и сложное администрирование.

Сходимость.

Этот процесс одновременно и совместный , и индивидуальный. Маршрутизаторы разделяют между собой информацию, но самостоятельно пересчитывают свои таблицы маршрутизации. Для того чтобы индивидуальные таблицы маршрутизации были точными, все маршрутизаторы должны иметь одинаковое представление о топологии сети. Если маршрутизаторы договорились о топологии сети, то имеет место их сходимость. Быстрая сходимость означает быстрое восстановление после обрыва связей и других изменений в сети. О протоколах маршрутизации и о качестве проектирования сети судят главным образом по сходимости.

Когда маршрутизаторы находятся в процессе сходимости, сеть восприимчива к проблемам маршрутизации. Если некоторые маршрутизаторы определили, что некоторая связь отсутствует, то другие ошибочно считают эту связь присутствующей. Если это случится, то отдельная таблица маршрутов будет противоречива, что может привести к отбрасыванию пакетов и петлям маршрутизации.

Невозможно, чтобы все маршрутизаторы в сети одновременно обнаружили изменения в топологии. В зависимости от использованного протокола, может пройти много времени пока все процессы маршрутизации в сети сойдутся. На это влияют следующие факторы:

Расстояние в хопах до точки изменения топологии.

Число маршрутизаторов, использующих динамические протоколы.

Эффект некоторых факторов может быть уменьшен при тщательном проектировании сети.