Об одной особенности теоремы котельникова. Так ли хорош цифровой звук — частота дискретизации и теорема Котельникова

15 октября 2013 в 13:31

Об одной особенности теоремы Котельникова

  • Математика

Написать данную статью меня вдохновила следующая задача:

Как известно из теоремы Котельникова, для того, чтобы аналоговый сигнал мог быть оцифрован а затем восстановлен, необходимо и достаточно, чтобы частота дискретизации была больше или равна удвоенной верхней частоте аналогого сигнала. Предположим, у нас есть синус с периодом 1 секунда. Тогда f = 1∕T = 1 герц, sin((2 ∗ π∕T) ∗ t) = sin(2 ∗ π ∗ t), частота дискретизации 2 герца, период дискретизации 0,5 секунды. Подставляем значения, кратные 0,5 секунды в формулу для синуса sin(2 ∗ π ∗ 0) = sin(2 ∗ π ∗ 0,5) = sin(2 ∗ π ∗ 1) = 0
Везде получаются нули. Как же тогда можно восстановить этот синус?

Поиск в интернете ответа на данный вопрос не дал, максимум того, что удалось найти - это различные дискуссии на форумах, где приводились довольно причудливые аргументы за и против вплодь до ссылок на эксперименты с различными фильтрами. Следует указать, что теорема Котельникова - это математическая теорема и доказывать или опровергать ее следует только математическими методами. Чем я и занялся. Оказалось, что доказательств этой теоремы в различных учебниках и монографиях достаточно много, но найти, где возникает данное противоречие мне долгое время не удавалось, поскольку доказательства приводились без многих тонкостей и деталей. Скажу также, что и сама формулировка теоремы в разных источниках была различной. Поэтому в первом разделе я приведу детальное доказательство этой теоремы, следуя оригинальной работе самого академика (В.А.Котельников "О пропускной способности «эфира»и проволоки в электросвязи." Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности. 1933 г.)

Сформулируем теорему, как она дана в первоисточнике:
Любую функцию F(t), состоящую из частот от 0 до f1 периодов в секунду, можно представить рядом

Где k - целое число; ω = 2πf1; Dk - постоянные, зависящие от F(t).

Доказательство: Любая функция F(t), удовлетворяющая условиям Дирихле (конечное число максимумов, минимумов и точек разрыва на любом конечном отрезке) и интегрируемая в пределах от −∞ до +∞, что вседа в электротехнике имеет место, может быть представлена интегралом Фурье:

Т.е. как сумма бесконечного количества синусоидальных колебаний с частотами от 0 до +∞ и амплитудами C(ω)dω и S(ω)dω, зависящими от частоты. Причем

В нашем случае, когда F(t) состоит лишь из частот от 0 до f1, очевидно

И поэтому F(t) может быть представлена так:

Функции же C(ω) и S(ω), как и всякие другие на участке

Могут быть представлены всегда рядами Фурье, причем эти ряды могут, по нашему желанию состоять из одних косинусов или одних синусов, если мы возьмем за период двойную длину участка, т.е. 2ω1.

Примечание автора: здесь надо дать пояснение. Котельников использует возможность дополнить функции C(ω) и S(ω) таким образом, чтобы C(ω) стала четной, а S(ω) нечетной функцией на двойном участке относительно ω1. Соответственно на второй половине участка значения этих функций будут C(2∗ω1 −ω) и −S(2∗ω1 −ω). Эти функции отражаются относительно вертикальной оси с координатой ω1, а функция S(ω) еще и меняет знак

Таким образом

Введем следующие обозначения

Подставляя получаем:

Преобразуем

Еще преобразуем

Интегрируем и заменяем ω1 на 2πf1:

Неточность в теореме Котельникова

Все доказательство выглядит строгим. В чем же проблема? Для понимания этого обратимся к одному не очень широко известному свойству обратного преобразования Фурье. Оно гласит, что при обратном преобразовании из суммы синусов и косинусов в исходную функцию, значение этой функции будет равно

То есть восстановленная функция равна полусумме значений пределов. К чему это приводит? Если наша функция непрерывная, то ни к чему. Но если в нашей функции есть конечный разрыв, то значения функции после прямого и обратного преобразования Фурье будут несовпадать с исходным значением. Вспомним теперь шаг в доказательстве теоремы, где интервал удваивается. Функция S(ω) дополняется функцией −S(2 ∗ ω1 − ω). Если S(ω1) (значение в точке ω1) равно нулю, ничего плохого не происходит. Однако если значение S(ω1) не равно нулю, восстановленная функция не будет равна исходной, поскольку в этой точке возникает разрыв равный 2S(ω1).
Вернемся теперь к исходной задаче про синус. Как известно, синус - нечетная функция, образ которой после преобразования Фурье есть δ(ω − Ω0) - дельта функция. То есть в нашем случае, если синус имеет частоту ω1, получаем:

Очевидно, что в точке ω1 суммируюся две дельта-функции от S(ω) и −S(ω) образуя ноль, что мы и наблюдаем.

Заключение

Теорема Котельникова, безусловно, великая теорема. Однако она должна быть дополнена еще одним условием, а именно

В такой формулировке исключаются граничные случаи, в частности случай с синусом у которого частота равна граничной частоте ω1, поскольку для него использовать теорему Котельникова с приведенным выше условием нельзя.

В 1933 г. В. А. Котельников доказал теорему, которая является одним из фундаментальных положений теоретической радиотехники. Эта теорема устанавливает возможность сколь угодно точного восстановления мгновенных значений сигнала с ограниченным спектром исходя из отсчетных значений (выборок), взятых через равные промежутки времени.

Построение ортонормированного базиса.

Как было показано, любые два сигнала с ограниченным спектром, принадлежащие семейству

являются ортогональными. Путем соответствующего выбора амплитудного множителя А можно добиться того, чтобы норма каждого из этих сигналов стала единичной. В результате будет построен ортонормированный базис, позволяющий разложить произвольный сигнал с ограниченным спектром в обобщенный ряд Фурье.

Достаточно рассмотреть лишь функцию

так как норма любого сигнала одинакова независимо от сдвига во времени. Поскольку

функции и будут ортонормированными, если

Бесконечная совокупность функций

образует базис Котельникова в линейном пространстве низкочастотных сигналов со спектрами, ограниченными сверху значением Отдельная функция называется отсчетной функцией.

Ряд Котельникова. Если - произвольный сигнал, спектральная плотность которого отлична от нуля лишь в полосе частот - , то его можно разложить в обобщенный ряд Фурье по базису Котельникова:

Коэффициентами рада служат, как известно, скалярные произведения разлагаемого сигнала и отсчетной функции:

Удобный способ вычисления этих коэффициентов заключается в применении обобщенной формулы Рэлея. Легко проверить, что отсчетная функция в пределах отрезка имеет спектральную плотность, равную . Это видно из сравнения формул (5.3) и (5.13). Тогда, если - спектр изучаемого сигнала то

Величина в фигурных скобках есть не что иное, как т. е. мгновенное значение сигнала отсчетной точке

Таким образом,

откуда следует выражение ряда Котельникова:

Теорему Котельникова на основании последнего равенства принято формулировать так: произвольный сигнал, спектр которого не содержит частот выше Гц, может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки времени

Пример 5.1. Дан сигнал

Выбрав некоторый фиксированный интервал между отсчетами получаем возможность однозначно восстановить по отсчетам любой сигнал, спектр которого не содержит составляющих на частотах выше граничной частоты

Если то к рассматриваемому гармоническому сигналу применима теорема Котельникова; отсчетные значения (выборки) данного сигнала

В предельном случае, когда частота стремится к слева, т. е.

на каждый период гармонического сигнала должно приходиться ровно две выборки.

Если же условия теоремы Котельникова нарушаются и отсчеты во времени берутся недостаточно часто, то однозначное восстановлен ние исходного сигнала принципиально невозможно. Через отсчетные точки можно провести бесчисленное множество кривых, спектральные плотности которых отличны от нуля вне полосы -

Рис. 5.2. Аппаратурная реализация синтеза сигнала по ряду Котельникова

Аппаратурная реализация синтеза сигнала, представленного рядом Котельникова.

Важная особенность теоремы Котельникова состоит в ее конструктивном характере; она не только указывает на возможность разложения сигнала в соответствующий ряд но и определяет способ восстановления непрерывного сигнала, заданного своими отсчетными значениями (рис. 5.2).

Пусть имеется совокупность генераторов, создающих на выходных зажимах отсчетные функции . Генераторы являются управляемыми - амплитуда их сигналов пропорциональна отсчетным значениям Если объединить колебания на выходах, подав их на сумматор, то с выхода сумматора в соответствии с формулой (5.18) можно будет снимать мгновенные значения синтезируемого сигнала s(t).

Пример 5.2. Прямоугольный видеоимпульс с единичной амплитудой и длительностью не принадлежит к числу сигналов с ограниченным спектром. Тем не менее модуль его спектральной плотности достаточно быстро (по закону ) уменьшается с ростом частоты.

Описание такого сигнала двумя отсчетами в начале и в конце импульса будет означать замену исходного колебания сигналом со спектром, ограниченным сверху частотой Математическая модель этого сигнала такова:

Если же описать импульс тремя равноотстоящими отсчетами, то приходим к аппроксимирующему сигналу, содержащему частоты вплоть до

Естественно, что с ростом числа учитываемых членов, т. е. с уменьшением временного интервала между выборками, точность аппроксимации будет повышаться.

Оценка ошибки, возникающей при аппроксимации произвольного сигнала рядом Котельникова.

Если - произвольный сигнал, то его можно представить суммой к в которую входит сигнал со спектром, ограниченным значением а также сигнал ошибки аппроксимации со спектром, занимающим в обшем случае бесконечную полосу частот .

Спектры указанных сигналов не перекрываются, поэтому сигналы ортогональны, а их энергии, т. е. квадраты норм, складываются:

В качестве меры ошибки аппроксимации можно принять расстояние, равное норме сигнала ошибки. Если - энергетический спектр сигнала то по теореме Рэлея

Пример 5.3. Дан экспоненциальный видеоимпульс , характеризующийся энергетическим спектром и нормой

Эффективная длительность этого импульса (см. гл. 2)

Спектр рассматриваемого сигнала неограничен. Поэтому следует предварительно подвергнуть сигнал низкочастотной фильтрации, пропустив его через фильтр нижних частот (ФНЧ). Значение верхней частоты полосы пропускания фильтра следует выбирать в зависимости от того, сколь часто берутся отсчеты сигнала на выходе ФНЧ. Предположим, что за время измеряются отсчетов с интервалом . Согласно теореме Котельникова, это означает, что .

Сигнал с выхода ФНЧ восстанавливается по своим отсчетным значениям точно. Однако по отношению к исходному видеоимпульсу неизбежна ошибка. В данном случае норма сигнала ошибки

Написать данную статью меня вдохновила следующая задача:

Как известно из теоремы Котельникова, для того, чтобы аналоговый сигнал мог быть оцифрован а затем восстановлен, необходимо и достаточно, чтобы частота дискретизации была больше или равна удвоенной верхней частоте аналогого сигнала. Предположим, у нас есть синус с периодом 1 секунда. Тогда f = 1∕T = 1 герц, sin((2 ∗ π∕T) ∗ t) = sin(2 ∗ π ∗ t), частота дискретизации 2 герца, период дискретизации 0,5 секунды. Подставляем значения, кратные 0,5 секунды в формулу для синуса sin(2 ∗ π ∗ 0) = sin(2 ∗ π ∗ 0,5) = sin(2 ∗ π ∗ 1) = 0
Везде получаются нули. Как же тогда можно восстановить этот синус?

Поиск в интернете ответа на данный вопрос не дал, максимум того, что удалось найти - это различные дискуссии на форумах, где приводились довольно причудливые аргументы за и против вплодь до ссылок на эксперименты с различными фильтрами. Следует указать, что теорема Котельникова - это математическая теорема и доказывать или опровергать ее следует только математическими методами. Чем я и занялся. Оказалось, что доказательств этой теоремы в различных учебниках и монографиях достаточно много, но найти, где возникает данное противоречие мне долгое время не удавалось, поскольку доказательства приводились без многих тонкостей и деталей. Скажу также, что и сама формулировка теоремы в разных источниках была различной. Поэтому в первом разделе я приведу детальное доказательство этой теоремы, следуя оригинальной работе самого академика (В.А.Котельников "О пропускной способности «эфира»и проволоки в электросвязи." Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности. 1933 г.)

Сформулируем теорему, как она дана в первоисточнике:
Любую функцию F(t), состоящую из частот от 0 до f1 периодов в секунду, можно представить рядом

Где k - целое число; ω = 2πf1; Dk - постоянные, зависящие от F(t).

Доказательство: Любая функция F(t), удовлетворяющая условиям Дирихле (конечное число максимумов, минимумов и точек разрыва на любом конечном отрезке) и интегрируемая в пределах от −∞ до +∞, что вседа в электротехнике имеет место, может быть представлена интегралом Фурье:

Т.е. как сумма бесконечного количества синусоидальных колебаний с частотами от 0 до +∞ и амплитудами C(ω)dω и S(ω)dω, зависящими от частоты. Причем

В нашем случае, когда F(t) состоит лишь из частот от 0 до f1, очевидно

И поэтому F(t) может быть представлена так:

Функции же C(ω) и S(ω), как и всякие другие на участке

Могут быть представлены всегда рядами Фурье, причем эти ряды могут, по нашему желанию состоять из одних косинусов или одних синусов, если мы возьмем за период двойную длину участка, т.е. 2ω1.

Примечание автора: здесь надо дать пояснение. Котельников использует возможность дополнить функции C(ω) и S(ω) таким образом, чтобы C(ω) стала четной, а S(ω) нечетной функцией на двойном участке относительно ω1. Соответственно на второй половине участка значения этих функций будут C(2∗ω1 −ω) и −S(2∗ω1 −ω). Эти функции отражаются относительно вертикальной оси с координатой ω1, а функция S(ω) еще и меняет знак

Таким образом

Введем следующие обозначения

Подставляя получаем:

Преобразуем

Еще преобразуем

Интегрируем и заменяем ω1 на 2πf1:

Неточность в теореме Котельникова

Все доказательство выглядит строгим. В чем же проблема? Для понимания этого обратимся к одному не очень широко известному свойству обратного преобразования Фурье. Оно гласит, что при обратном преобразовании из суммы синусов и косинусов в исходную функцию, значение этой функции будет равно

То есть восстановленная функция равна полусумме значений пределов. К чему это приводит? Если наша функция непрерывная, то ни к чему. Но если в нашей функции есть конечный разрыв, то значения функции после прямого и обратного преобразования Фурье будут несовпадать с исходным значением. Вспомним теперь шаг в доказательстве теоремы, где интервал удваивается. Функция S(ω) дополняется функцией −S(2 ∗ ω1 − ω). Если S(ω1) (значение в точке ω1) равно нулю, ничего плохого не происходит. Однако если значение S(ω1) не равно нулю, восстановленная функция не будет равна исходной, поскольку в этой точке возникает разрыв равный 2S(ω1).
Вернемся теперь к исходной задаче про синус. Как известно, синус - нечетная функция, образ которой после преобразования Фурье есть δ(ω − Ω0) - дельта функция. То есть в нашем случае, если синус имеет частоту ω1, получаем:

Очевидно, что в точке ω1 суммируюся две дельта-функции от S(ω) и −S(ω) образуя ноль, что мы и наблюдаем.

Заключение

Теорема Котельникова, безусловно, великая теорема. Однако она должна быть дополнена еще одним условием, а именно

В такой формулировке исключаются граничные случаи, в частности случай с синусом у которого частота равна граничной частоте ω1, поскольку для него использовать теорему Котельникова с приведенным выше условием нельзя.

Теорема Котельникова


5.3. Теорема Котельникова.

5.3.1. Непрерывные сигналы описываются непрерывными функциями времени. Мгновенные значения таких сигналов изменяются во времени плавно, без резких скачков (разрывов). Пример временной диаграммы непрерывного сигнала приведен на рис.5.2а. Сигналы, временные диаграммы которых изображены на рис.5.1, не являются непрерывными, поскольку их мгновенные значения в некоторые моменты времени изменяются скачками. Многие реальные сигналы являются непрерывными. К таковым можно отнести, например, электрические сигналы при передаче речи, музыки, многих изображений.

Рис. 5.1. График реализации телеграфного сигнала.

а)

б)

в)

г)
Рис. 5.2. Дискретизация, квантование непрерывного сигнала: а – непрерывный сигнал; б – дискретный по времени (импульсный) сигнал; в – дискретный по времени и по значениям (цифровой) сигнал; г – ошибка квантования

5.3.2. Сигналы с дискретным временем.

Их можно получить из непрерывных, выполняя над последними специальное преобразование, называемое дискретизацией по времени. Смысл этих преобразований проиллюстрируем с помощью временных диаграмм, приведенных на рис.5.2. Будем считать, что можно измерить мгновенные значения сигнала u(t) в моменты времени Δt, 2Δt, 3Δt…; Δt называют интервалом дискретизации по времени. Измеряемые значения u(Δt), u(2Δt), u(3Δt) отмечены на рис.5.2 а точками. По этим значениям можно сформировать последовательность коротких прямоугольных импульсов, длительность которых одинакова и меньше интервала дискретизации Δt, а амплитуды равны измеренным значениям сигнала u(t). Последовательность таких прямоугольных импульсов изображена на рис.5.2б и часто называется импульсным сигналом или сигналом с дискретным временем. Такой сигнал будет обозначен символом uΔ(t). Отметим, что шаг дискретизации по времени здесь постоянен и равен Dt, а амплитуда каждого импульса равна мгновенному значению сигнала u(t) в соответствующий момент времени. Поскольку непрерывный сигнал u(t) в выделенные моменты времени может принимать любые значения, то и амплитуды импульсов импульсного сигнала, полученного из непрерывного путем дискретизации по времени, также могут принимать любые значения: На рис.5.2б значения амплитуд импульсов указаны с точностью лишь до одного десятичного знака после запятой. Для точного указания значения амплитуд импульсов может потребоваться неограниченное число десятичных знаков после запятой, т.е., значения амплитуд импульсов заполняют непрерывно некоторый интервал. Поэтому амплитуды импульсов сигнала uΔ(t) иногда называют непрерывными величинами.

5.3.3. Цифровые сигналы.

Как будет показано в дальнейшем, при передаче импульсных сигналов в электросвязи часто применяют специальное преобразование, состоящее в следующем. Предположим, что при передаче каждый импульс может иметь амплитуду лишь с разрешенным значением. Число разрешенных значений амплитуд импульсов конечно и задано. Например, на рис.5.2в разрешенные значения амплитуд пронумерованы цифрами 1, 2, 3, …; величина Δu равна разности между любыми двумя соседними разрешенными значениями амплитуд. Если истинное значение амплитуды импульса сигнала uΔ(t), подлежащее передаче, попадает между разрешенными значениями, то амплитуду передаваемого импульса принимают равной разрешенному значению, являющемуся ближайшим к истинному. Такое преобразование называют квантованием, совокупность разрешенных значений амплитуд передаваемых импульсов называют шкалой квантования, а интервал Δu между соседними разрешенными значениями – шагом квантования. Например, на рис. 2в разрешенные значения амплитуд импульсов приняты равными целым числам 0; 1; 2; 3 и образуют равномерную шкалу квантования, которая может быть продолжена и на область отрицательных значений сигнала u(t); при этом шаг квантования Δu=1.

Последовательность импульсов, полученная в результате квантования импульсов сигнала uΔ(t), также является импульсным сигналом, для которого введем обозначения u ц(t). Особенность этого сигнала состоит в том, что амплитуды импульсов теперь имеют только разрешенные значения и могут быть представлены десятичными цифрами с конечным числом разрядов. Такие сигналы называют дискретными или цифровыми. Квантование приводит к ошибке квантования e(t) = u ц(t) – uΔ(t). На рис.5.2г приведен пример временной диаграммы ошибки е(t). Передача цифрового сигнала u ц(t) вместо сигнала uΔ(t) фактически эквивалентна передаче импульсного сигнала uΔ(t) с предварительно наложенным на него сигналом ошибки е(t), который в этом случае может рассматриваться как помеха. Поэтому е(t) часто называют помехой квантования или шумом квантования.

5.3.4. Теорема Котельникова.

Поскольку дискретные сигналы широко используют в настоящее время при передаче сообщений, а многие реальные сигналы являются непрерывными, то важно знать: можно ли непрерывные сигналы представлять с помощью дискретных; можно ли указать условия, при которых такое представление оказывается точным. Ответы на эти вопросы дает доказанная в 1933 г. советским ученым В.А.Котельниковым теорема, являющаяся одним из фундаментальных результатов теоретической радиотехники. Эта теорема формулируется следующим образом: если непрерывный сигнал u(t) имеет ограниченный спектр и наивысшая частота в спектре меньше, чем f в герц, то сигнал u(t) полностью определяется последовательностью своих мгновенных значений в дискретные моменты времени, отстоящие друг от друга не более чем на 1/(2fв) секунд.

Смысл теоремы Котельникова поясним с помощью временных диаграмм, приведенных на рис.5.2а. Пусть это будет часть временной диаграммы сигнала u(t) с ограниченным спектром и с верхней граничной частотой f в. Если интервал дискретизации Δt<2 f в, то в теореме утверждается, что по значениям u(Δt), u(2Δt), u(3Δt),… можно определить точное значение сигнала u(t) для любого заданного момента времени t, находящегося между моментами отсчета. В соответствии с этой теоремой сигнал с ограниченным спектром и верхней частотой w в<=wΔ/2 можно представить рядом

, (2)

Где u(nΔt), n=…-1, 0, +1,… - отсчеты мгновенных значений сигнала и(t), wΔ = 2¶fΔ , fΔ=ЅΔt – частота дискретизации по времени.

Ряд 2 имеет бесконечное число слагаемых, так что для вычисления значения сигнала u(t) в момент времени t необходимо знать значения всех отсчетов и(nΔt), n=…-1, 0, +1, … как до, так и после указанного момента t. Точное равенство в (2) достигается, только когда учитываются все слагаемые; если ограничиться конечным числом слагаемых в правой части (2), то их сумма даст лишь приближенное значение сигнала u(t).

Представление сигнала u(t) рядом (2) иллюстрируется с помощью рис.5.3, на котором изображены временные диаграммы сигнала u(t) и трех слагаемых ряда (2).

Рис.5.3. Представление сигнала с ограниченным спектром рядом Котельникова.

Таким образом, теорема Котельникова указывает условия, при которых непрерывный сигнал может быть точно восстановлен по соответствующему ему сигналу с дискретным временем. Реальные непрерывные сигналы, подлежащие передаче, как правило, имеют спектры хотя и довольно быстро стремящиеся к нулю с ростом частоты, но все же неограниченные. Такие сигналы могут быть восстановлены по своим дискретным отсчетам лишь приближенно. Однако, выбирая шаг дискретизации Δt достаточно малый, можно обеспечить пренебрежимо малое значение ошибки восстановления непрерывного сигнала по его переданным отсчетам в дискретные моменты времени. Например, при передаче телефонного сигнала, спектр которого неограничен, обычно принимают, что условная верхняя граничная частота f в = 3,4 кГц. В этом случае получаем, что частота дискретизации должна удовлетворять неравенству fΔ і 6,8 кГц, т.е. в одну секунду должно передаваться 6,8 тысяч отсчетов. Качество передачи речи при этом оказывается вполне удовлетворительным. Увеличение частоты дискретизации сверх указанного значения допустимо и приводит к незначительному повышению точности восстановления телефонного сигнала. Если же принять fΔ<6,8 кГц, то точность восстановления телефонного сигнала заметно падает.


Часто производители аудио аппаратуры, особено наушников, в процессе пиара своей продукции активно продвигают “кристальную чистоту” звука и широчайший частотный диапазон, который не только за 20 кГц переваливает, но и в некоторых случаях доходит даже до 100 кГц. Конечно это имеет свои плюсы, даже не смотря на то, что выше 20кГц мы не слышим, а то и еще меньше. Но есть определенные проблемы, которые связанны с понятием частота дискретизации и вытекающие из теоремы Котельникова. Они в одночасье поставили жирный крест на применении слова “качественно” для большинства аудио-форматов и аудио устройств в моих глазах.

Любой процесс в природе является непрерывным. Например звуковой сигнал принятый микрофоном и преобразованный в электрический (аналоговый) сигнал — непрерывен.

Термин “Аналоговый сигнал” подчеркивает, что такой сигнал “аналогичен”, т.е. полностью подобен порождающему его процессу, или в данном случае звуку.

И непрерывный он не потому что будет длиться вечно, а потому, что его значение можно измерять в любые моменты времени. А между этими моментами сигнал будет продолжать непрерывно меняться.

Что такое частота дискретизации?

Как только встает вопрос о переводе аналогового сигнала в цифровой, сразу возникает понятие дискретизации, т.е. разбиение непрерывного сигнала на кусочки по времени. Делается это непосредственно в процессе преобразования.

Через равные промежутки времени, называемые шагом дискретизации Δ , Аналогово-Цифровой-Преобразователь (АЦП) измеряет значение сигнала, поступающего на его вход и преобразует это значение в цифровой вид. То, как часто осуществляется измерение величины аналогово сигнала и называется частотой дискретизации .

Какая частота дискретизации считается достаточной?

Товарищ Котельников, еще в 1933 в работе «О пропускной способности эфира и проволоки в электросвязи » создал фундаментальную, для цифровой техники теорию, которая обычно формулируется следующим образом:

Лю бой непрерывный сигнал u(t) с конечным спектром (имеющим максимальное значение частоты F ) можно представить в виде дискретных отсчетов u(k Δ t) , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала: f ≥ 2F , передать его по линии связи, а затем восстановить исходный аналоговый сигнал .

Говоря проще, для того чтобы можно было правильно воспроизвести (восстановить) аналоговый сигнал из цифрового вида, достаточно, чтобы частота дискретизации была вдвое выше максимальной частоты в сигнале.

Верхний порог слышимости человека принято ограничивать частотой в 20кГц. Из теоремы Котельникова следует, что для правильного воспроизведения сигнала частотой 20 кГц достаточно частоты дискретизации в 40кГц. Если заглянуть в свойства подавляющего большинства аудио файлов, то можно увидеть строчку:


Почему именно 44.1 кГц? Википедия отвечает так : “Эта цифра выбрана компанией Sony из соображений совместимости с о стандартом телевещания PAL , за счёт записи 3 значений на линию картинки кадра x 588 линий на кадр x 25 кадров в секунду, и достаточности (по теореме Котельникова ) для качественного покрытия всего диапазона частот, различаемых человеком на слух (20 Гц - 20 кГц).”

При частоте дискретизации в 44.1кГц шаг дискретизации Δ составляет всего 0.00002267=22.67*10 -6 секунды или 22.67 микросекунды . Это время между двумя точками сигнала.

Вроде все нормально, так чего же тут не так?

Начнем с частот, кратных частоте дискретизации. На частоте 441 Герц при нашей частоте дискретизации (44.1 кГц), на один период приходится 100 точек. Чтож, тут нет никаких претензий, синусоида идеальная. Если же повысить частоту на порядок, т.е. в 10 раз, то эти же 100 точек будут формировать уже не 1, а 10 периодов. И даже в этом случае Будет формироваться сигнал очень похожий на синусоиду.

А вот на частоте 22050, т.е. наивысшей частоте, удовлетворяющей теореме Котельникова (при частоте дискретизации 44.1кГц) на 100 точек приходится 50 периодов колебаний.

Эти сигналы генерировались в программе Audacity. И по началу создалось впечатление, что точек там достаточно, просто масштаб не позволяет разглядеть и поэтому так все угловато…

Чтож… приблизим и рассмотрим каждый период по отдельности:

Частота в 4410 Гц вполне себе достойная синусоида, чего никак не скажешь о частоте 22050Гц , с ее двумя точками на период. По факту это уже и не синусоида, а сигнал треугольной формы.

Конечно в любом реальном ЦАПе на выходе применяется НЧ-фильт, который срезает высокочастотную составляющую и немного скругляет этот треугольник. Однако чем выше класс вашего аудио устройства, тем заметнее будет угловатость звука

Ради эксперимента можете попробовать сгенерировать в Audcity сигналы одной и той же частоты но разных форм. У треугольной и прямоугольной форм из-за их “угловатости” и резких фронтов возникают дополнительные гармоники, а вот синусоидальный сигнал звучит гораздо более мягко и естественно.

Но даже и это не самое страшное. До этого момента рассматривались сигналы с частотами кратными частоте дискретизации.

— А что же будет, если взять другие частоты???


Знакомьтесь, цифровая синусоида равной амплитуды и частотой 15 кГц. Красивый узорчик, не правда ли? Как видите амплитуда меняется с частотой. Это уже интермодуляционные искажения, т.е. Наш истинный сигнал в 15 кГц промодулирован частотой кратной 44.1 кГц.

Вы можете возразить, мол узорчик то красивый, но может звучит он как и положенно. Для того чтобы убедиться в этом своими ушами — частота которого меняется от 20 герц до 20 кГц. И вы отчетливо услышите, как с какого-то момента частота перестанет равномерно расти, а начнет плавать туда-сюда.

Оно и понятно, вот так выглядят синусоиды на разных частотах выше 10’000Гц

В защиту теоремы Котельникова стоит отметить, что да, его теорема верна, иначе бы мы не смогли различать в музыке высокие звуки, и что тарелка что маракас звучали бы одинаково неправдоподобно, но она абсолютно не гарантирует высокого качества записи.

В жизни Вы врядли станете наслаждаться звучанием синусоиды, но это был очень наглядный пример проблем качества цифровых аудио записей.

Частота дискретизации и Hi-Res звук

Конечно сегодняшние технологии уже побороли данную проблему. Вероятно вам встречалось сокращение Hi-Res (High Resolution — высокое разрешение), которым обычно обзывают качество звука в 24 бита и частотой дискретизации в 192 кГц.

А это уже 10 точек на частоте 22’050 кГц, такую синусоиду уже явно можно считать идеальной. И вот там «кристально чистые верха» ваших наушников себя точно оправдают.

Возникает только 3 проблемы:

  • Стоимость подобных устройств . Например портативный плеер с такой частотой дискретизации обычно стоит около 200$.
  • Где брать записи в таком качестве.
  • Размеры аудиофайлов очень велики. 1 альбом вашей любимой группы в Hi-Res легко может занимать более 1,5Гб дискового пространства.

В заключение

Конечно от плохого звучания высоких частот еще никто не умирал и, возможно я излишне драматизирую, говоря, что частота дискретизации в 44.1 кГц так уж плоха, однако, как видите особым качеством на высоких частотах она не блещет.

На мой взгляд в домашних условиях гораздо интереснее слушать винил:-) Но т.к. с виниловой вертушкой в метро не поездишь то меломанские запросы вполне можно удовлетворить и цифровым плеером:-P

Всем качественного звука!

(P.S. — комментируем, не стесняемся:-)