Оборудование для компьютерных сетей. Состав и назначение сетевого оборудования как объект исследования. Топология компьютерных сетей

В настоящее время это наиболее распространённый сетевой проводник, состоящий из 8 медных проводников, перевитых друг с другом для уменьшения электромагнитных помех. Длина сегмента из такого провода – до 100 метров ( рис. 1.1).


Рис. 1.1.

Средняя скорость информации в витой паре - 100 мегабит /сек, волновое сопротивление - 100 ом. На более высоких скоростях передачи информации резко возрастает затухание сигнала (чем больше скорость, тем больше затухание). Так, на скорости 100 мбит/сек (100 мгц) амплитуда падает в 1000 раз, что эквивалентно затуханию сигнала в 67 дб. Задержка сигнала на метр кабеля обычно 4-5 наносек. Сравнивая витую пару с другими кабелями, можно отметить, что он отличается простым монтажом, но подвержен помехам. Кабель относительно дешевый, но с низкой секретностью информации. Передача в нем по методу точка-точка (один приемник и один передатчик), для монтажа витой пары обычно используется топология звезда . выпускается в нескольких категориях. 1 категория – телефонный кабель (лапша). Применяют для передачи речи. 2 категория имеет скорость до 1 мгц (1 мегабит сек). В кабеле категории 3 – 9 витков на метр, затухание до 40 дб и скорость информации до 10 мегабит сек. Кабель 4-й категории пропускает сигнал до 20 мгц. 5 категория самая ходовая. В ней скорость информации до 100 Мгб сек и используется скрутка в 27 витков на метр. Категория

6 может передавать сигнал частотой до 500 мгц. Кабель 7 категории очень дорогой – в нем применяется экран как для отдельных проводников, так и общий. Что касается изоляции кабеля, то чаще всего используется ПВХ (non-plenum) изоляция серого цвета. Она дешева, но горит с выделением ядовитого газа. С сетевой картой кабель соединяется разъемом 8P8C ( рис. 1.2).


Рис. 1.2.

Провод содержит в себе центральный проводник из меди, слой изолятора в медной или алюминиевой оплетке (это экран от электромагнитных помех) и внешнюю ПВХ изоляцию. Максимальная скорость передачи данных - 10 Мбит/сек. Длина сегмента тонкого коаксиала до 185 метров ( рис. 1.3). Такой провод имеет диаметр около 5 мм.


Рис. 1.3.

С сетевой картой кабель соединяется через BNC (БИ ЭН СИ ) разъем байонетного типа с поворотом ( рис. 1.4).


Рис. 1.4.

В сравнении с витой парой коаксиал дороже, его ремонт сложнее, гибкость хуже (особенно, у толстого кабеля). Но у него есть преимущество - оплетка кабеля (медная или из алюминиевой фольги) уничтожает помехи, искажающие сигнал. Применяют коаксиальный кабель , обычно, в топологии шина , при этом используется многоточечная передача сигнала (много приемников и много передатчиков).

Оптоволоконный кабель

Кабель содержит несколько стеклянных световодов, защищенных изоляцией. Он обладает скоростью передачи данных в несколько Гбит в сек, не подвержен электропомехам. Передача сигналов без затухания идет на расстояние , измеряемое километрами – рис. 1.5 . В многомодовом кабеле сегмент имеет длину до 2 км, а в одномодовом – до 40 км.


Рис. 1.5.

Биты информации кодируются такими сущностями, как сильный свет, слабый свет, нет света. Источниками сигнала в кабеле служит инфракрасный светодиод или лазер. Оптический провод самый негибкий из всех кабельных сред передачи сигнала, зато он самый помехоустойчивый, с высокой секретностью информации. Монтаж такого кабеля сложный и дорогой, обычно, сваркой на специальном оборудовании. Кабель иногда бронируют, т.е. защищают металлической оболочкой (для прочности). Оптический кабель бывает одномодовый и многомодовый. В одномодовом кабеле сигнал передает инфракрасный лазер с одной волной 1,3 мкм, что годится для очень дальней передачи сигнала. Помимо того, что мощный лазер дорог, он также и недолговечен. Многомодовый оптический кабель чаще применим на практике. В нем используется много волн длиной 0,85 мкм и инфракрасный диод . Поскольку у каждой волны свое затухание и преломление, то происходит частичное искажение формы сигнала и такой кабель используют на меньших расстояниях, чем одномодовый. Среди других особенностей оптического кабеля можно отметить, что стекло может треснуть от механических воздействий и мутнеет от радиации, что, в свою очередь , ведет к росту затухания сигнала в кабеле. Для изоляции оптоволокна обычно применяют тефлон (пленум). Это дорогая (в сравнении с ПВХ) изоляция оранжевого цвета, но она практически не горит в огне. Разъем кабеля обычно байонетного типа ( рис. 1.6). На рисунке показан оптический коннектор типа ST , который соединяется с кабелем клеевым способом, т. е. путем вклейки оптического волокна в наконечник с последующей сушкой и шлифовкой. Коннекторы для монтажных и соединительных шнуров различаются диаметром хвостовика (соответственно 0,9 и 3,0 мм) и отсутствием у первых элементов крепления кабеля. Одномодовые и многомодовые коннекторы различаются требованиями к допускам на параметры капилляра керамического наконечника.

Сетевые адаптеры

Сетевые адаптеры, или сетевые карты, -- это специальные устройства, основное назначение которых состоит в обеспечении двунаправленного обмена данными между персональным компьютером и локальной сетью. Являясь одним из элементов аппаратной конфигурации компьютера, таким же, как, например, модем, видеоадаптер или звуковая карта, сетевые адаптеры подключаются к ПК через один из стандартных портов, и настраиваются аналогично прочему оборудованию. В настоящее время принято различать несколько типов сетевых адаптеров по принципу используемого ими интерфейса как для. соединения с компьютером, так и для подключения сетевого кабеля.

Моноинтерфейсные и комбинированные сетевые адаптеры

Сегодня самыми распространенными классами локальных сетей Ethernet являются 10Base2 и 10BaseT. Первые создаются на основе коаксиального кабеля, и потому сетевые адаптеры, работающие с этим типом сетей, оснащены разъемами Bayonet Network Connector (BNC).

Рисунок 5 - Разъем BNC для локальных сетей 10Base2

Данные разъемы имеют цилиндрическую форму и внешне отдаленно напоминают приемное гнездо штекера телевизионной антенны. На внешней поверхности цилиндрической части разъема, как правило, имеется два небольших выступа высотой приблизительно в миллиметр, предназначенных для фиксации замка Т-коннектора.

Вторая разновидность сетевых карт рассчитана па работу с сетями класса 10BaseT и комплектуется разъемами RJ-45 (рисунок 6).

Рисунок 6 - Разъем RJ-45 для локальных сетей 10BaseT

Этот тип разъемов хорошо знаком владельцам модемов, современных телефонов и факсимильных аппаратов -- внешне он очень похож на контактные гнезда данных устройств, к которым подключается телефонная линия. Разъем RJ-45 имеет вид углубления прямоугольной формы с небольшим пазом для замка сетевой вилки, в нижней части гнезда расположено восемь контактов, соединяющихся с соответствующими контактами вилки сетевого кабеля.

Сетевые адаптеры, оборудованные разъемом только какого-либо одного типа, например, BNC или RJ-45, принято называть моноинтерфейсными. Существуют также сетевые карты, на которых присутствуют разъемы обоих типов -- их называют комбинированными.

Ответ на вопрос о том, сетевые карты какого типа следует приобретать при проектировании небольшой локальной сети, очевиден: комбинированные адаптеры позволяют планировать прокладку сети с большей гибкостью при выборе различных вариантов -- в случае необходимости вы можете без всякого труда заменить витую пару на коаксиальный кабель и наоборот. Для крупных современных локальных сетей, которые должны отвечать критериям высокой надежности и масштабируемости, вполне подойдут моноинтерфейсные сетевые адаптеры с разъемом стандарта RJ-45, поскольку такие сети относятся, как правило, к классу 10BaseT и не используют другие сетевые интерфейсы.

Сетевые адаптеры ISA, PCI и USB

Другой критерий, согласно которому принято классифицировать сетевые карты, подразумевает различие всех имеющихся на современном рынке адаптеров по простому признаку -- а именно, порту, посредством которого сетевая карта соединяется с компьютером. Всего существует три наиболее широко распространенных варианта, и первый из них -- это сетевые адаптеры, подключаемые к материнской плате ПК через шину ISA (рисунок 7).

Рисунок 7 - Сетевой адаптер ISA

Основной отличительной особенностью сетевых карт этого типа, позволяющей определить возможность ее подключения к слоту ISA, что называется, «на глаз», является удлиненная нижняя часть платы, на которой расположены контакты для соединения с портом -- контактная площадка на сетевых адаптерах PCI заметно короче. Карты ISA бывают как моноинтерфейсными, так и комбинированными.

Сетевые адаптеры данного класса в настоящее время встречаются все реже и реже, поскольку большинство материнских плат современной конфигурации более не поддерживает шину ISA, считающуюся к настоящему времени «устаревшей». Связано это с некоторыми техническими характеристиками данного стандарта. Например, устройства ISA не позволяют автоматически перераспределять аппаратные прерывания, вследствие чего нередко становятся виновниками конфликтов оборудования. Именно поэтому такие сетевые платы стоят сейчас в магазинах очень дешево -- всего лишь от пяти до пятнадцати долларов. По этой же причине прежде, чем приобретать подобный сетевой адаптер, следует убедиться, что на материнской плате вашего компьютера присутствует слот ISA.

Сетевые карты другой категории подключаются к шине PCI. На сегодняшний день они наиболее распространены, поскольку слот PCI имеется на материнских платах всех современных компьютеров (Рисунок 8). Как и сетевые карты ISA, адаптеры PCI могут быть либо оборудованы разъемом RJ-45, либо иметь комбинированный интерфейс. К отдельному классу можно отнести сетевые адаптеры, подключаемые к шине USB (Universal Serial Bus, Рисунок 9). Такие сетевые адаптеры реализованы в виде внешнего устройства, присоединяющегося к USB-порту компьютера посредством специального кабеля и не требующие отдельного питания.

Практически все они ориентированы на использование в локальных сетях стандарта 10BaseT/100BaseT и оборудованы разъемом RJ-45 для витой пары.


Рисунок 8 - Сетевой адаптер PCI

Рисунок 9 - Сетевой адаптер USB

Поскольку сетевые адаптеры USB появились в продаже относительно недавно, по крайней мере, по сравнению с их предшественниками, поддерживающими стандарты ISA и PCI, их технические характеристики выглядят гораздо более привлекательно. Данные устройства практически не требуют настройки (за исключением необходимости установки соответствующих драйверов), работают достаточно быстро.

Рассматривая различные типы сетевых карт, следует сказать несколько слов и о так называемых интегрированных сетевых адаптерах. Некоторые современные модели материнских плат, в основном, предназначенных для установки процессоров класса Intel Pentium и AMD Athlon, имеют встроенный сетевой адаптер стандарта 10BaseT/lOOBaseT. Отличительной особенностью таких плат является смонтированный на них разъем RJ-45. Драйверы интегрированного сетевого адаптера обычно входят в комплект поставки драйверов материнской платы. В принципе, ничто не мешает пользователю отключить встроенный сетевой адаптер в настройках персонального компьютера и использовать любую другую сетевую карту, например устройство PCI или USB.

Сетевой кабель

Одним из наиболее важных компонентов любой локальной сети является сетевой кабель, посредством которого выполняется прокладка коммуникаций. В настоящем разделе мы рассмотрим два типа сетевого кабеля, используемого в локальных сетях класса 10Base2 и 10BaseT.

Коаксиальный сетевой кабель применяется в локальных сетях класса 10Base2. Он имеет четырехслойную структуру: два слоя коаксиального кабеля выполнены из проводника, два - из диэлектрика. Самый внутренний слой -- это проводящая жила, по которой в локальной сети передается несущий информацию сигнал. Жила может быть представлена в виде нескольких сплетенных тонких проводников, либо в виде одной толстой медной проволоки, что является более распространенным вариантом. Жила покрыта диэлектрической пленкой, поверх которой расположен второй проводящий слой -- так называемый экран, защищающий линию от посторонних помех. Экран выполнен в виде металлической проволочной оплетки, иногда помимо оплетки внутренний изолирующий слой обернут в металлическую фольгу -- такие кабели называют кабелями с двойной экранизацией. Встречаются и кабели с учетверенной экранизацией: в них экран состоит из двух слоев оплетки и двух слоев фольги, либо из двух слоев фольги, оплетки и тонкой металлической сетки. Подобные кабели имеют большую толщину, обладают высокой жесткостью при изгибах и применяются в основном в помещениях со значительным уровнем радиоэлектронных помех. В электрической схеме монтажа сетевых разъемов экран играет роль заземления. Поверх экрана расположен последний, четвертый диэлектрический слой, обеспечивающий не только электромагнитную защиту кабеля, но и его защиту от внешних физических повреждений (рисунок 10).


Рисунок 10 - Коаксиальный сетевой кабель:

1-- центральный провод (проводящая жила); 2-- изолирующий слой центрального провода; 3-- экранирующий слой («экран»); 4-- защитная оболочка (внешний изолятор)

Существует несколько различных типов коаксиального кабеля, применяемого в локальных сетях класса 10Base2. Их характеристики приведены в таблице1.

Для локальных сетей используется в основном тонкий коаксиальный кабель с волновым сопротивлением Z = 50 Ом, в табл. 4.1 этот тип кабеля представлен семействами RG-58, RG-174, RG-178, а также кабелем отечественного производства РК-50. В случае если вы располагаете коаксиальным кабелем с неизвестным волновым сопротивлением, то вы можете измерить точный диаметр внутренней проводящей жилы, диаметр экранирующего слоя, найти в справочнике значение диэлектрической постоянной для используемого в кабеле диэлектрика и рассчитать величину волнового сопротивления по следующей формуле (рисунок 11):


Рисунок 11 - Расчет величины волнового сопротивления коаксиального кабеля где е -- диэлектрическая постоянная, d -- диаметр центрального провода, a D -- внутренний диаметр экрана

Таблица 1 - Характеристики различных типов коаксиального кабеля

Марка кабеля

Волновое

Сопротивление

Максимальное

Эффективное

Напряжение

Коэффициент

затухания,

Материал*

* ПЭ -- полиэтилен; ППЭ -- пенополиэтилен; М -- медная проволока; МЛ -- медная луженая проволока; МС -- медная посеребренная проволока

Витая пара

Несмотря на свое название, сетевой кабель «витая пара», применяемый при построении сетей 10BaseT, содержит не одну, а четыре пары проводников, перевитых друг относительно друга. Каждая пара также закручивается относительно других пар проводников (рисунок 12).

Рисунок 12 - Кабель «витая пара»

В каждой из четырех пар проводников в данном типе кабеля различается «главный» провод, который по традиции, идущей еще со времен становления телефонной связи, называют «Ring», и «дополнительный» провод, называемый «Tip». Изоляционное покрытие провода Ring имеет однотонную окраску, покрытие провода Tip -- белое с полосками основного цвета. Если, например, Ring имеет зеленый цвет, то Tip в этой паре будет белым с зелеными полосами.

Для того чтобы при монтаже и прокладке компьютерных сетей было легче отличать одну пару проводников от другой, провода Ring каждой из четырех пар открашены в собственный цвет, при этом каждой паре для простоты назначен свой порядковый номер с 1 по 4. Таким образом, среди имеющихся 8 проводов кабеля «витая пара» можно выделить проводники Ringl, Tipl, Ring2, Tip2, Ring3, Tip3 и Ring4, Tip4. Соответствия расцветок проводников номерам пар в кабеле «витая пара» приведены в таблице 2.

Таблица 2 - Номера пар проводников в кабеле «витая пара»

Исходя из этой таблицы, легко можно понять, что если в технической документации заходит речь о проводе Tip4, то это будет белый провод с коричневыми полосами, если же упоминается, скажем, провод Ring2, то этот провод имеет оранжевую окраску. Теперь в случае необходимости мы без всякого труда отыщем нужный проводник, сняв часть изоляционного покрытия кабеля «витая пара».

Исходя из функциональных характеристик, таких как пропускная способность и устойчивость к помехам, различные марки кабеля «витая пара» принято делить на несколько категорий, информация о которых в соответствии с международными стандартами ISO/IEC 11801 и ANSI/EIA/TIA-568 приведена в Таблице 3.

Характеристики и назначение

Применяется при прокладке телефонных линий, не подходит для передачи данных в локальных компьютерных сетях

Пригоден для передачи данных в компьютерных сетях со скоростью не более 4 Мбит/с

Пригоден для передачи данных в компьютерных сетях со скоростью не более 10 Мбит/с. Используется при прокладке сетей класса 10BaseT

Пригоден для передачи данных в компьютерных сетях со скоростью не более 16 Мбит/с. Используется при прокладке сетей класса TokenRing

Пригоден для передачи данных в компьютерных сетях со скоростью не более 100 Мбит/с. Используется при прокладке сетей класса 10BaseT и 100BaseTX

Пригоден для передачи данных в компьютерных сетях со скоростью не более 100 Мбит/с и частотой до 300 МГц включительно. Используется при прокладке сетей класса 10BaseT и 100BaseTX

Пригоден для передачи данных в компьютерных сетях со скоростью не более 100 Мбит/с и частотой до 600 МГц включительно. Используется при прокладке сетей класса 10BaseT и 100BaseTX

Таблица 4 - AWG

Диаметр проводника, мм

Диаметр проводника, мм

Категория, к которой относится тот или иной кабель «витая пара», обычно указана в его маркировке, которая печатается заводским способом на внешней изоляции кабеля. Диаметр провода «витая пара» принято исчислять согласно американскому стандарту AWG (American Wide Gauge), причем чем меньше диаметр, тем больше величина AWG. Соответствие значений AWG диаметру проводника в миллиметрах показано в таблице 4.

В локальных сетях 10BaseT применяется, как правило, кабель «витая пара» категории 5 или 5+, диаметром проводника 22 или 24 AWG. В некоторых ситуациях, например тогда, когда локальная сеть прокладывается в помещениях с высоким уровнем электромагнитных помех, либо требуется повысить точность передачи информации за счет снижения перекрестных наводок в кабеле, используется экранированная «витая пара». Как правило, экран выполняется из металлической фольги. При этом существует несколько различных вариантов экранирования: фольгой может быть обернута каждая из четырех пар, плюс все они защищены сверху дополнительным слоем фольги, расположенным под внешней изоляцией (кабель марки STP), либо внутри кабеля предусмотрен один общий для всех пар экран (кабель марки FTP).

Концентраторы, или хабы, являются центральным звеном в локальных сетях классов 10BaseT и 100BaseT, имеющих топологию «звезда». Фактически хаб представляет собой мультипортовый репитер, то есть в его основную функциональную задачу входит получение данных от подключенных к портам концентратора компьютеров или других хабов, реформирование сигнала одновременно с его усилением, и его дальнейшая ретрансляция на другие порты. Помимо разъемов RJ-45 для сетей 10BaseT многие концентраторы имеют также порты BNC, что позволяет подключать к ним сегменты 10Base2 либо использовать коаксиальный кабель в качестве магистрального, последовательно соединяя несколько хабов в цепочку. Как правило, один из разъемов RJ-45 концентратора имеет разводку, позволяющую присоединять его к другим хабам: такое «многоэтажное» подключение концентраторов друг к другу принято называть термином каскадирование. Этот порт обычно обозначается надписью «In», «Uplink», «Cascading» или «Cross-Over». В некоторых случаях рядом с таким портом имеется переключатель MDI/MDI-X, позволяющий по мере необходимости включать порт либо в обычный режим, либо в режим каскадирования. В случае если порт не оснащен переключателем, но к нему требуется подключить еще один компьютер (например, если все остальные порты заняты), для этого можно использовать кабель «cross-over», применяемый обычно для соединения двух компьютеров по принципу «точка--точка». Существует множество различных моделей концентраторов: все они различаются количеством портов, пропускной способностью и другими техническими характеристиками. Самые недорогие варианты для малых локальных сетей стоят всего-навсего несколько десятков долларов, в то время как более совершенные концентраторы могут обойтись вам в несколько сотен долларов США.


Рисунок 13 - Концентратор

Оборудование ЛВС может быть активным или пассивным. К пассивным элементам относятся кабель, короб, коммутационные устройства такие как шкафы, Patch-panel, розетки, коммутационные шнуры.

К активному оборудованию ЛВС относятся сетевые адаптеры, выполняющие функцию присоединениея пользователя к ЛВС, поддерживающими обмен данными между ПК и средой передачи данных ЛВС. Кроме этого, сетевой адаптер выполняет роль временного хранилища данных, буферизацию.

Сетевые карты можно разделить на два типа: адаптеры для клиентских компьютеров и адаптеры для серверов. В зависимости от применяемой технологии вычислительных сетей Ethernet, Fast Ethernet или Gigabit Ethernet, сетевые карты обеспечивают скорость передачи данных: 10, 100 или 1000 Мбит/с.

Репитер (REPITER) - прибор повторитель, предназначенный для увеличения длины сетевого сегмента.

Концентратор (ACTIVE HUBE) - это устройство множественного доступа от 4 до 32 портов, используется для объединения пользователей в сеть.

Мост (BRIDGE) - это устройство(например, компьютер), с 2 портами, обычно используемый для объединения нескольких рабочих групп ЛВС, позволяет осуществлять фильтрацию сетевого трафика, разбирая сетевые (MAC) адреса.

Коммутатор (SWITCH) - прибор с 4-32 портами, который делит общую среду передачи данных на логические сегменты. Каждый логический сегмент подключается к отдельному порту коммутатора для объединения нескольких рабочих групп ЛВС.

Маршрутизатор (ROUTER) - обеспечивает выбор маршрута(например, компьютер), для передачи данных между несколькими сетями, а так же для объединения нескольких рабочих групп ЛВС, позволяет осуществлять фильтрацию сетевого трафика, разбирая сетевые (IP) адреса.

Медиаконвертер - прибор, как правило, с двумя портами, обычно используемый для преобразования среды передачи данных (коаксиал-витая пара, витая пара-оптоволокно)

Трансивер - усилитель сигналов, служит для двунаправленной передачи между адаптером и сетевым кабелем или двумя сегментами кабеля. Трансиверы применяются и в качестве конверторов для преобразование электрических сигналов в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации.

Шлюзы - это коммуникационное оборудование (например, компьютер), служащее для объединения разнородных сетей с различными протоколами обмена. Шлюзы полностью преобразовывают весь поток данных, включая коды, форматы, методы управления и т.д.

Активное оборудование мосты, маршрутизаторы и шлюзы в локальной вычислительной сети используют специализированное программное обеспечение.

Кто осуществляет монтаж активного оборудования?

Монтаж активного оборудования и его настройка в действительности отличаются друг от друга и должны осуществляться узкоспециализированными профессионалами по предварительно разработанному проекту. Только в этом случае Вы сможете обойтись без напрасно купленного и не корректно работающего оборудования. Например, обратившись в Русское Инженерное Общество Вы всегда получите квалифицированный совет, помощь в монтаже и настройке активного оборудования и не останетесь на едине с неработающей техникой.

Как не запутаться в разрастающейся паутине проводов?

В процессе развития любого предприятия постоянно происходит процесс смены численности сотрудников, увеличение или сокращения подразделений, развитие филиалов и удалённых отделов. Предприятие, как живой организм, требует свободной от шлаков «кровеносной системы», развиваясь и расширяясь, опутывает всё больше число сотрудников, растёт количество разнообразного активного и исполнительного оборудования. Настаёт момент, когда руководство компании решается на очередные инвестиции в области ИТ-инфраструктуры и должно получить отличный прогнозируемый результат в построении современной сети.

Реализация проекта "новая ЛВС"

Одним из направлений нашей деятельности является проведение всего комплекса работ по проектированию, модернизации, а так же поставке и монтажу активного, пассивного оборудования для создания ИТ-инфраструктуры на малых и средний предприятиях, построение Центров Обработки Данных (ЦОД), создание систем хранения данных, «серверных помещений», оснащённых слаботочными кабельными системами, системами бесперебойного электропитания, системами мониторинга и поддержания заданных климатических условий. Так же мы оборудуем эти и любые другие помещения надежными системами безопасности, такими как видеонаблюдение, пожарная сигнализация, контроль и управление доступом.

Мы используем готовые, не дорогие решения по интеграции с системами ИТ. Всё это позволяет оптимизировать расходы и расширять возможности существующего оборудования.

Мы используем в работе проверенные технологии, оборудование и материалы сертифицированных производителей. Строительные работы по монтажу ЛВС сводим к минимуму, нацелены на конечный результат, благодарственные письма и рекомендации от Заказчиков главный показатель нашей квалификации.

Преимущества Заказчика при работе с нами

Проектный отдел . Наш отдел ГИПа является основной всех творческих начинаний, необходимых для создания современного качественного продукта. Проектировщики первыми осуществляют индивидуальный подход к каждому разрабатываемому объекту, выполняют быстрый и качественный расчёт, детальную проработку технической документации, осуществляют «авторский надзор» и сопровождение принятых инженерных решений.
Свобода выбора . Мы не связаны с поставками какого-то определённого оборудования, у нас собственный склад и множество различных поставщиков. Мы внедряем на объектах оборудование только тех производителей, чье оборудование отвечает всем требованиям клиента по надежности, экономичности, безопасности и цене. Установленные нами инженерные системы, позволяют сокращать Ваши расходы на этапе строительства, в процессе эксплуатации и при наращивании системы в будущем.
Штатные специалисты . Наши инженера и монтажники, работающие на объектах, трудятся на постоянной основе, все работы от монтажа до наладки, производим самостоятельно без помощи случайных монтажных бригад. Наши инженеры не продавцы попутных услуг и дополнительных работ, а подготовленные профессионалы, нацеленные на результат.
Легальность . Наша деятельность закреплена юридически, мы всегда готовы предоставить Вам необходимые разрешения, допуски, лицензии и сертификаты. Отсутствие посредников позволяет сократить сроки принятия технических решений и в конечном итоге - сэкономить Ваши средства.
Сервисный центр . С 2009 года мы оказываем для Вас услуги по техническому обслуживанию и ремонту сложных современных инженерных систем, обладает диагностическим оборудованием, стационарной мастерской, собственным складом для запасных частей и подменного фонда. Квалификация наших сотрудников позволяют в кратчайшие сроки отремонтировать и запустить в работу практически любую систему безопасности, а мобильность бригад и наличие нескольких опорных пунктов позволяют прибыть на место срочного ремонта в течение 2-х часов в Москве.
Индивидуальный подход для нас это чуткость к ожиданию заказчика, полное взаимопонимание, надежность сотрудничества, эффективность и достижение общей цели. Мы стремимся к длительному и взаимовыгодному сотрудничеству.

Цель: знакомство с оборудованием локальных компьютерных сетей, их видами и характеристиками.

Задачи урока

Обучающие:

  • познакомить студентов со структурой локальных сетей;
  • познакомить с оборудованием локальных сетей.

Развивающие:

  • формировать навыки выделения топологии сети;
  • расширение кругозора;
  • умение слушать объяснение преподавателя, вести конспект.

Воспитательные

  • прививать интерес к предмету.
  • формировать навыки самостоятельности и дисциплинированности, основ коммуникативного общения.

Оборудование: ЛВС класса, компьютер, проектор, презентация по теме.

Ход урока:

1. Введение

Занятие сопровождается демонстрацией презентации (Приложение 1).

Преподаватель: Здравствуйте! Тема сегодняшнего занятия «Оборудование локальных сетей» (Слайд1) . Записать тему в тетрадь

2. Изучение нового материала

Преподаватель: Компьютерные сети представляют собой вариант сотрудничества людей и компьютеров, обеспечивающего ускорение доставки и обработки информации. Соединенные в сеть компьютеры обмениваются информацией и совместно используют периферийное оборудование и устройства хранения информации. В зависимости от расстояния между компьютерами сети бывают: локальные, региональные и глобальные (слайд 2 ). Сегодня поговорим более подробно о локальных сетях.

Локальная компьютерная сеть - это сеть, объединяющая компьютеры, расположенные на небольших расстояниях – внутри одного здания или в нескольких зданиях, расположенных недалеко друг от друга. (слайд 3 )

Локальную сеть еще называют ЛВС - локальная вычислительная сеть, но это название скорее относится к временам, когда компьютеры называли вычислительными машинами, но иногда эта аббревиатура еще используется.

Обычно локальные сети устраиваются внутри какой-либо организации, предприятия или учебного заведения. Например, если в компьютерном классе компьютеры объединены в сеть, то эта сеть будет называться локальной.

Состав сети:

  • компьютеры,
  • сетевые кабели (каналы связи),
  • сетевое оборудование (записать в тетрадь).

Преподаватель: для чего нужны каналы связи?

Студенты: каналы связи - это физическая среда (кабели или окружающее пространство), по которой передается информация между компьютерами.

Преподаватель: Рассмотрим подробнее, какие каналы связи существуют. (слайд 6 -нарисовать схему в тетради).

(В процессе объяснения следующего материала преподавателем студенты кратко записывают в тетрадь основную информацию)

В настоящее время распространение получили два основных типа сетей с использование проводных и беспроводных каналов связи.

1. Локальные сети, коммутация в которых выполняется посредством проводного или, (редко), оптоволоконного кабеля. Такой тип сетей сочетает в себе надежность и высокую скорость работы, позволяет связывать между собой даже довольно удаленные компьютеры.

Витая пара – вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников (слайды 7, 8, 9 ).

Коаксиальный кабель – вид электрического кабеля. Состоит из двух цилиндрических проводников, соосно вставленных один в другой. Чаще всего используется центральный медный проводник, покрытый пластиковым изолирующим материалом, поверх которого идёт второй проводник - медная оплётка или алюминиевая фольга с оплёткой из медных лужёных проволок.

Коаксиальный кабель обеспечивает передачу данных на большие расстояния, использовался при построении компьютерных сетей (пока не был вытеснен витой парой).

Используется в сетях кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

Благодаря совпадению центров обоих проводников потери на излучение практически отсутствуют; одновременно обеспечивается хорошая защита от внешних электромагнитных помех. (слайды 10, 11, 12)

Оптоволоконный кабель – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно.

Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям. (слайд 13, 14, 15 )

2. Беспроводные локальные сети.

Этот тип сетей, чаще всего, организуется с использованием технологии WI-FI. Преимуществом таких сетей является сравнительная простота их развертывания, для радиосигнала не нужно вести провода, сверлить стены и перекрытия. Не всем может понравиться сплетение проводов на полу или короба с проводкой идущие по стенам, как это бывает в случае применения кабеля. Но у беспроводной технологии есть и свои минусы. Например, радиосигнал чувствителен к помехам, может плохо работать во время осадков. Скорость передачи данных в беспроводных сетях обычно ниже, чем в сетях с использованием кабеля.

Стандартом беспроводной связи для локальных сетей является технология Wi-Fi . Wi-Fi – (аббревиатура от "Wireless Fidelity" – беспроводная высокая точность) – это набирающий обороты формат передачи цифровых данных по радиоканалам.
Технология Wi-Fi постоянно совершенствуется, что позволяет передавать больший поток данных, обеспечивает более надежную связь и защиту.
Последнее время Wi-Fi технологиями снабжаются ноутбуки, сотовые телефоны, КПК, игровые приставки и даже компьютерные мыши.
Применения Wi-Fi достаточно универсальны, она может быть использована там, где нежелательно или нет возможности сделать проводную сеть. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении. Скорость зависит от количества подключенных компьютеров и от расстояния до точки доступа.

Радиоканалы Bluetooht - Bluetooth - название, данное новому стандарту современной технологии беспроводной передачи данных, использующему радиоволны на близком расстоянии, заменяющему кабель для соединения мобильных и/или установленных электронных устройств. Этот стандарт позволяет соединять друг с другом при минимальном пользовательском участии практически любые устройства: мобильные телефоны, ноутбуки, принтеры, цифровые фотоаппараты и даже холодильники, микроволновые печи, кондиционеры. Соединить можно все, что соединяется, то есть имеет встроенный микрочип Bluetooth. Изначально технология Bluetooth создавалась лишь для радиосвязи, и никаких планов по созданию беспроводных локальных сетей на ее основе не было. Но такие проекты вскоре появились, и теперь существует понятие Bluetooth-сети. это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с. (слайд 17 )

Каналы связи обладают следующими характеристиками (слайды 18, 19 - записать в тетрадь ).

  • Пропускная способность (скорость передачи данных): Мбит, Кбит в секунду
  • Надежность (способность передавать информацию без искажения и потерь)
  • Стоимость

Сравнительная характеристика представлена в таблице (Приложение 2).

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной. (слайд 20 ).

Топология Шина (слайд 21 ). При построении сети по шинной схеме каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы.

Сигнал проходит по сети через все компьютеры, отражаясь от конечных терминаторов.

Преимущества сетей шинной топологии:

  • отказ одного из узлов не влияет на работу сети в целом;
  • сеть легко настраивать и конфигурировать;
  • сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

  • разрыв кабеля может повлиять на работу всей сети;
  • ограниченная длина кабеля и количество рабочих станций;
  • трудно определить дефекты соединений

Топология Кольцо (слайд 22 ). Эта топология представляет собой последовательное соединение компьютеров, когда последний соединён с первым.

Каждый компьютер работает как повторитель, усиливая сигнал и передавая его дальше.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети. Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Топология Звезда (слайд 23 ). Каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля.

Преимущества сетей топологии звезда:

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля.

Для соединения компьютеров в локальную сеть используется коммуникационное оборудование.

Сетевые платы (адаптер, сетевой адаптер)- это платы расширения, вставляемые в порты расширения на системной плате компьютера. О сновная функция - передача и прием информации по сети. (слайд 24 )

Коцентратор (Hub) - сетевое устройство, предназначенное для объединения компьютеров (устройств) в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. устройство, соединяющее параллельно компьютеры в локальной сети. Также оно играет роль повторителя, препятствующего затуханию сигнала, что позволяет увеличить максимальную общую длину кабеля между компьютерами Концентраторы – это аппаратные устройства множественного доступа, которые объединяет в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или физические сегменты сети. (слайд 25 )

Мост (dridge) - устройство сопряжения локальных сетей. Позволяет всем компьютерам одной локальной сети свободно работать с компьютерами другой локальной сети. (слайд 26 )

Маршрутизатор (router) - устройство, используемое для организации крупных локальных сетей. Обеспечивает трафик между локальными сетями, имеющими разные сетевые адреса. Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана. (слайд 27 )

Повторитель (repeater) - устройство, позволяющее избежать затухания сигнала при очень большой длине соединительных кабелей. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети станциями. Обычно это устройство устанавливается в середине линии связи, что бы обеспечить устойчивую двустороннюю связь. Бывают как пассивные, так и активные повторители, а также преобразующие повторите ли, которые применяются для соединения, например, "витой пары" с оптоволокном. Роль повторителя может играть специально настроенный компьютер. (слайд 28 )

Переключатель (switch) - устройство, переключающее линию связи между всеми компьютерами, причем этот делается в реальном времени, что позволяет устранить снижение производительности из-за встречных потоков данных. Также оно играет роль повторителя, препятствующего затуханию сигнала.

При построении локальных сетей самыми распространенными являются две технологии - Ethernet и Token Ring .

Технология Ethernet была разработана Робертом Меткалфом (Bob Metcalfe) и Дэвидом Боггсом (David Boggs) в Исследовательском центре Palo Alto (PARC) американской корпорации XEROX в начале 70-х.

Первая локальная сеть, созданная по этой технологии объединила компьютеры Xerox Alto и лазерный принтер. Скорость передачи данных была 2.94 Мбит/с

В июле 1976 года Меткалф и Боггс опубликовали в журнале "Communications of the Association for Computing Machinery" (ACM) статью "Ethernet: Распределение пакетов в локальной компьютерной сети" .13 декабря 1977 года корпорация XEROX получила патент на технологию, а также название Ethernet.

В 1995 году на основе Ethernet была реализована технология, позволяющая обмениваться данными по локальной сети со скоростью 100 Мбит/с Эту технологию назвали Fast Ethernet (Быстрый Ethernet).

В 1998 году была реализована технология Gigabit Ethernet со скоростью передачи информации 1000 Мбит/с.

Технология Token Ring была разработана корпорацией IBM в 70-х годах. В настоящее время эта технология по популярности уступает только Ethernet.

Самостоятельная работа студентов по группам.

Преподаватель : Вам предлагается сравнить различные технологии локальных сетей (Ethernet, Token Ring, FDDI, ArcNet). Для этого вся группа разбивается на команды. Каждая команда занимается поиском информации об отдельной технологии. Результат представить в виде презентаций.

Студенты выполняют самостоятельную работу и затем показывают результат на проекторе.

В ходе показа презентаций все студенты заполняют таблицу.

Используемые материалы

1. Е.И.Гребенюк, Н.А.Гребенюк «Технические средства информатизации» - М.: Изд. центр «Академия», 2007

2. Л.З. Шауцукова «Информатика 10-11» - М.: «Просвещение», 2004

3. http://lessons-tva.info/ - Обучение в Интернет

Фрагмент вычислительной сети (рис. 1) включает основные типы коммуникационного оборудования, применяемого сегодня для образования локальных сетей и соединения их через глобальные связи друг с другом. Для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы-повторители, мосты, коммутаторы и маршрутизаторы. Для подключения локальных сетей к глобальным связям используются специальные выходы (WAN порты) мостов и маршрутизаторов, а также аппаратура передачи данных по длинным линиям – модемы (при работе по аналоговым линиям) или же устройства подключения к цифровым каналам (TA – терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).

Рис. 1 . Фрагмент сети

Роль кабельной системы

Для построения локальных связей в вычислительных сетях в настоящее время используются различные виды кабелей – коаксиальный кабель, кабель на основе экранированной и неэкранированной витой пары и оптоволоконный кабель. Наиболее популярным видом среды передачи данных на небольшие расстояния (до 100 м) становится неэкранированная витая пара , которая включена практически во все современные стандарты и технологии локальных сетей и обеспечивает пропускную способность до 100 Мб/с (на кабелях категории 5). Оптоволоконный кабель широко применяется как для построения локальных связей, так и для образования магистралей глобальных сетей. Оптоволоконный кабель может обеспечить очень высокую пропускную способность канала (до нескольких Гб/с) и передачу на значительные расстояния (до нескольких десятков километров без промежуточного усиления сигнала).

В качестве среды передачи данных в вычислительных сетях используются также электромагнитные волны различных частот – КВ, УКВ, СВЧ. Однако пока в локальных сетях радиосвязь используется только в тех случаях, когда оказывается невозможной прокладка кабеля, например, в зданиях, являющихся памятниками архитектуры. Это объясняется, прежде всего, недостаточной надежностью сетевых технологий, построенных на использовании электромагнитного излучения. Для построения глобальных каналов этот вид среды передачи данных используется шире – на нем построены спутниковые каналы связи и наземные радиорелейные каналы, работающие в зонах прямой видимости в СВЧ-диапазонах.

Согласно зарубежным исследованиям (журнал LAN Technologies), 70% времени простоев обусловлено проблемами, возникшими вследствие низкого качества применяемых кабельных систем. Поэтому так важно правильно построить фундамент сети – кабельную систему. В последнее время в качестве такой надежной основы все чаще используется структурированная кабельная система.

Структурированная кабельная система (Structured Cabling System, SCS) – это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Преимущества структурированной кабельной системы:

  • Универсальность. Структурированная кабельная система при продуманной организации может стать единой средой для передачи компьютерных данных в локальной вычислительной сети, организации локальной телефонной сети, передачи видеоинформации и даже передачи сигналов от датчиков пожарной безопасности или охранных систем. Это позволяет автоматизировать многие процессы по контролю, мониторингу и управлению хозяйственными службами и системами жизнеобеспечения.
  • Увеличение срока службы. Срок старения хорошо структурированной кабельной системы может составлять 8–10 лет.
  • Уменьшение стоимости добавления новых пользователей и изменения их мест размещения. Стоимость кабельной системы в основном определяется не стоимостью кабеля, а стоимостью работ по его прокладке. Поэтому более выгодно провести однократную работу по прокладке кабеля, возможно с большим запасом по длине, чем несколько раз выполнять прокладку, наращивая длину кабеля. Это помогает быстро и дешево изменять структуру кабельной системы при перемещениях персонала или смене приложений.
  • Возможность легкого расширения сети. Структурированная кабельная система является модульной, поэтому ее легко наращивать, позволяя легко и ценой малых затрат переходить на более совершенное оборудование, удовлетворяющее растущим требованиям к системам коммуникаций.
  • Обеспечение более эффективного обслуживания. Структурированная кабельная система облегчает обслуживание и поиск неисправностей по сравнению с шинной кабельной системой.
  • Надежность. Структурированная кабельная система имеет повышенную надежность поскольку обычно производство всех ее компонентов и техническое сопровождение осуществляется одной фирмой-производителем.

Топология сети

Топология, т.е. конфигурация соединения элементов в ЛВС, привлекает к себе внимание в большей степени, чем другие характеристики сети. Это связано с тем, что именно топология во многом определяет многие важные свойства сети, например, такие, как надежность (живучесть), производительность и др.

Существуют разные подходы к классификации топологий ЛВС. Согласно одному из них конфигурации локальных сетей делят на два основных класса: широковещательные и последовательные. В широковещательных конфигурациях каждый ПК (приемопередатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся общая шина, дерево, звезда с пассивным центром. В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Отсюда ясно, что широковещательные конфигурации – это, как правило, ЛВС с селекцией информации, а последовательные – ЛВС с маршрутизацией информации.

В широковещательных конфигурациях должны применяться сравнительно мощные приемники и передатчики, которые могут работать с сигалами в большом диапазоне уровней. Эта проблема частично решается введением ограничений на длину кабельного сегмента и на число подключений или использованием цифровых повторителей (аналоговых усилителей).

Сетевая топология – это геометрическая форма сети. В зависимости от топологии соединений узлов различают сети шинной (магистральной), кольцевой, звездной, иерархической, произвольной структуры (рисунок 3).

Рисунок 3 – Сетевые топологии

Конфигурация типа дерево представляет собой более развитый вариант конфигурации типа шина. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями («хабами»). Оно обладает необходимой гибкостью для того, чтобы охватить средствами ЛВС несколько этажей в здании или несколько зданий на одной территории. При наличии активных повторителей отказ одного сегмента не приводит к выходу из строя остальных. В случае отказа повторителя дерево разветвляется на два поддерева или на две шины.

Широкополосные ЛВС с конфигурацией типа дерево часто имеют так называемый корень – управляющую позицию, в которой размещаются самые важные компоненты сети. К надежности этого оборудования предъявляются высокие требования, поскольку от него зависит работа всей сети. По этой причине оборудование часто дублируется.

Другой распространенный способ соединения абонентских систем в ЛВС при их небольшом числе – иерархическое соединение. В нем промежуточные узлы работают по принципу «накопи и передай». Основные преимущества данного метода заключаются в возможности оптимального соединения ЭВМ, входящих в сеть. Недостатки связаны в основном со сложностью логической и программной структуры ЛВС. Кроме того, в таких ЛВС снижается скорость передачи информации между абонентами различных иерархических уровней.

Наиболее распространенные последовательные конфигурации – «кольцо», «цепочка», «звезда с интеллектуальным центром», «снежинка». В конфигурациях «кольцо» и «цепочка» для правильного функционирования ЛВС необходима постоянная работа всех блоков РМА. Чтобы уменьшить эту зависимость, в каждый из блоков включается реле, блокирующее блок при неисправностях. Для упрощения разработки РМА и ПК сигналы обычно передаются по кольцу только в одном направлении. Каждая станция ЛВС располагает памятью объемом от нескольких битов до целого пакета. Наличие памяти замедляет передачу данных в кольце и обусловливает задержку, длительность которой зависит от числа станций. возвращаясь снова к станции – отправителю, отправитель в ходе обработки пакета может установить некоторый индикатор подтверждения. Этот индикатор может служить для управления потоком и (или) квитирования, и должен как можно быстрее вернуться к источнику. Управление потоком предполагает удаление пакетов из кольца станцией – получателем или после завершения полного круга – станцией – отправителем. Поскольку любая станция может выйти из строя и пакет может не попасть по назначению, обычно бывает необходим специальный «сборщик мусора», который опознает и уничтожает такие «заблудившиеся» пакеты.

Сетевые адаптеры

Сетевой адаптер (Network Interface Card, NIC) – это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы и распределение функций между сетевым адаптером и драйвером может изменяться от реализации к реализации.

В первых локальных сетях сетевой адаптер с сегментом коаксиального кабеля представлял собой весь спектр коммуникационного оборудования, с помощью которого организовывалось взаимодействие компьютеров. Сетевой адаптер компьютера-отправителя непосредственно по кабелю взаимодействовал с сетевым адаптером компьютера-получателя. В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.

Сетевой адаптер обычно выполняет следующие функции:

  • Оформление передаваемой информации в виде кадра определенного формата. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра, по которой сетевой адаптер станции назначения делает вывод о корректности доставленной по сети информации.
  • Получение доступа к среде передачи данных. В локальных сетях в основном применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (наиболее часто применяются метод случайного доступа или метод с передачей маркера доступа по кольцу). В последних стандартах и технологиях локальных сетей наметился переход от использования разделяемой среды передачи данных к использованию индивидуальных каналов связей компьютера с коммуникационными устройствами сети, как это всегда делалось в телефонных сетях, где телефонный аппарат связан с коммутатором АТС индивидуальной линией связи. Технологиями, использующими индивидуальные линии связи, являются 100VG-AnyLAN, ATM и коммутирующие модификации традиционных технологий – switching Ethernet, switching Token Ring и switching FDDI. При использовании индивидуальных линий связи в функции сетевого адаптера часто входит установление соединения с коммутатором сети.
  • Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию. Так как в локальных сетях используются широкополосные кабели, то сетевые адаптеры не используют модуляцию сигнала, необходимую для передачи дискретной информации по узкополосным линиям связи (например, телефонным каналам тональной частоты), а передают данные с помощью импульсных сигналов. Представление же двоичных 1 и 0 может быть различным.
  • Преобразование информации из параллельной формы в последовательную и обратно. Эта операция связана с тем, что для упрощения проблемы синхронизации сигналов и удешевления линий связи в вычислительных сетях информация передается в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.
  • Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации. Сетевой адаптер использует для решения этой задачи специальные методы кодирования, не использующие дополнительной шины с тактовыми синхросигналами. Эти методы обеспечивают периодическое изменение состояния передаваемого сигнала, которое используется тактовым генератором приемника для подстройки синхронизма. Кроме синхронизации на уровне битов, сетевой адаптер решает задачу синхронизации и на уровне байтов, и на уровне кадров.

Сетевые адаптеры различаются по типу и разрядности используемой в компьютере внутренней шины данных – ISA, EISA, PCI, MCA.

Сетевые адаптеры различаются также по типу принятой в сети сетевой технологии – Ethernet, Token Ring, FDDI и т.п. Как правило, конкретная модель сетевого адаптера работает по определенной сетевой технологии (например, Ethernet). В связи с тем, что для каждой технологии сейчас имеется возможность использования различных сред передачи данных (тот же Ethernet поддерживает коаксиальный кабель, неэкранированную витую пару и оптоволоконный кабель), сетевой адаптер может поддерживать как одну, так и одновременно несколько сред. В случае, когда сетевой адаптер поддерживает только одну среду передачи данных, а необходимо использовать другую, применяются трансиверы и конверторы.

Трансивер (приемопередатчик, trans mitter+receiver ) – это часть сетевого адаптера, его оконечное устройство, выходящее на кабель. В первом стандарте Ethernet, работающем на толстом коаксиале, трансивер располагался непосредственно на кабеле и связывался с остальной частью адаптера, располагавшейся внутри компьютера, с помощью интерфейса AUI (attachment unit interface). В других вариантах Ethernet"а оказалось удобным выпускать сетевые адаптеры (да и другие коммуникационные устройства) с портом AUI, к которому можно присоединить трансивер для требуемой среды.

Вместо подбора подходящего трансивера можно использовать конвертор , который может согласовать выход приемопередатчика, предназначенного для одной среды, с другой средой передачи данных (например, выход на витую пару преобразуется в выход на коаксиальный кабель).