Отличительные особенности вирусов от других живых организмов. Критерии классификации вирусов. Чем вирусы отличаются от других живых организмов

Вирусы – это своеобразная форма жизни, кот-й присущи все её атрибуты:

    способность к самовоспроизведению;

    наследственность – способность передавать потомкам основные св-ва;

    генетическая изменчивость;

    адаптация к определённому хозяину;

    способность вызывать инфекцию, размножаться в клетке хозяина;

    вирусный геном функционирует по общим законам генетического кода.

Вирусы относятся к живым , но их нельзя назвать орг-мами. Отличия от живых систем:

    малые размеры;

    очень простое строение вириона – геном (ДНК или РНК) и капсид (белковая оболочка);

    нет клеточного строения – нет цитоплазмы, мембран, рибосом (нет с-м мобилизации энергии и белоксинтезирующей);

    у вириона есть только 1 вид нуклеиновой к-ты – ДНК или РНК;

    не способны к росту и бинарному делению;

    способны объединять собственный геном с геномом клетки-хозяина;

    не могут существовать без клетки-хозяина;

    могут иметь фрагментированный геном.

    Размножаются путем воспроизведения себя из собственной геномной нуклеиновой к-ты.

Вироиды – состоят только из небольших молекул РНК (~ 300-400 нуклеотидов).

Прионы – инфекционные белковые частицы, приводящие к развитию летальных неврологических заболеваний.

    Что такое вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид.

Вирион- полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида, находится вне живой клетки.

Нуклеокапсид состоит из нук к-ты и белковой оболочки, т.е. капсида.

Тип симметрии – способ пространственной упаковки капсомеров относительно НК и др.(спиральный, кубический, смешанной).

    Спиральный- нитевидные вирусы – белковые субъединицы располагаются по спирали, а между ними НК. Лучше защищают НК, но требуется большее количество белка, чем при кубической.

    Кубическая – в основе различные комбинации равносторонних треугольников, образующихся из сочетания шаровидных белковых субъединиц. Сочетаясь могут формировать замкнутую сферическую поверхность. Икосаэдеры имеют 20 граней, 12 вершин – встречаются чаще всего, т.к. самая эффективная и экономичная симметрия.

Суперкапсид – наружная оболочка сложно организованных вирусов, состоящих из двух слоев липидов (ЦМ клетки хозяина) и заключенных в них гликозилированных суперкапсидных вирусных белков, которые выступают над поверхностью вириона в виде своеобразных шипов. Шипы выполняют ф-ции: распознают клеточные рецепторы и связываются с ними, обеспечивают слияние вирусной мембраны с мембраной клетки и ее лизосом, способствуют распространению вируса в организме за счет слияния клеток, обладают св-ми протективных антигенов.

    Критерии классификации вирусов.

    НК: тип, число нитей, процентное содержание, молекулярный вес, содержание гуанина и цитозина.

    Морфология: тип симметрии, число капсомеров, наличие внеш липопротеидной оболочки, форма, размеры вирионов.

    Биофизические св-ва: константа седиментации, плавучая плотность.

    Белки: количество структурных белков и их локализация, ак состав.

  1. Размножение в тканевых культурах: особенности репликации.

    Круг поражаемых хозяев: особенности патогенеза инфекционного процесса; онкогенные св-ва.

    Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37 и 5 о С, действие жирорастворителей и отдельых катионов).

    Антигенные св-ва.

    Типы вирусных геномов.

РНК-геномы

    Одноцепочечная единая РНК, обладающая матричной активностью (позитивная РНК) – вирус полиомиелита

    Одноцепочечная единая РНК, не обладающая матричной активностью (негативная РНК). Вирион имеет транскриптазу – парамиксовирусы, рабдовирусы.

    Одноцепочечная фрагментированная РНК, не обладающая матричной активностью (негативная РНК). Вирион имеет транскриптазу – ортомиксовирусы.

    Двухцепочечная фрагментированная РНК. Вирион имеет транскриптазу – реовирусы.

    Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном).вирионы имеют транскриптазу – ретровирусы.

ДНК-геномы

    Одноцепочечная линейная ДНК – парвовирусы.

    Одноцепочечная кольцевая ДНК – фаги

    Двухцепочечная линейная ДНК – вирус герпеса.

    Двухцепочечная кольцевая ДНК – паповавирусы, вирусгепетита В.

    Двухцепочечная ДНК с ковалентно связанным терминальным гидрофобным белком – аденовирусы.

    Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью – вирус оспы.

5.Методы культивирования вирусов

Культуры клеток. Культуры клеток готовят из тканей живот­ных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.

Перевиваемые однослойные культуры клеток приготов­ляют из злокачественных и нормальных линий клеток, обладаю­щих способностью длительно размножаться in vitro в определен­ных условиях.

Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток обладают сравнительно вы­сокой жизнеспособностью и устойчивостью к различным воздей­ствиям используют 8-12-дневные куриные эмбрионы.

Лабораторные животные.

Преимущество данного метода перед другими состоит в воз­можности выделения тех вирусов, которые плохо репродуциру­ются в культуре или эмбрионе. К его недостаткам относятся кон­таминация организма подопытных животных посторонними ви­русами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данно­го вируса, что удлиняет сроки исследования..

6.Заражение лабораторных животных.Правила, способы.

Методы заражения животных разнообразны: внутрибрюшинный, внутривенный, внутримышечный, интраназальный, заражение в мозг и другие.

Заражение в мозг . (Метод применяют при работе с нейротропными вирусами). Для заражения чаще используют белых мышей. Левой рукой плотно прижимают мышь к столу, большим и указательным пальцами оттягивают кожу головы назад. Туберкулиновым шприцем с предохранительной муфтой на игле прокалывают лобную кость несколько латеральнее средней линии и вводят 0,02-0,03 мл материала. Игла вводится на глубину 1,5-2 мм, при этом отчетливо ощущается "провал" в полость черепа.

Перед заражением место введения тщательно обрабатывают 3 % спиртовым раствором йода , при необходимости выстригая шерстный покров. Подкожно заражают, приподнимая кожную складку в области спины, лопатки, коленной складки, шеи. Внутрикожный метод заключается во введении в толщу верхнего слоя кожи в плантарную поверхность задней конечности в направлении от пальцев к голеностопному суставу. В мышцу бедра, груди заражают при внутримышечном введении. Часто у мышей, крыс применяют внутрибрюшинное заражение, фиксируя при этом животное вниз головой. При внутривенном заражении мышей, крыс в боковую вену хвоста, морских свинок - в сердце в районе мечевидного отростка, кроликов - в краевую вену уха, птиц - в подкрыльцовую вену важно контролировать, чтобы в вену из шприца не попали пузырьки воздуха. Перед интраназальным заражением животным (кроме кроликов) во избежание чихания и разбрызгивания вируссодержащего материала делают глубокий эфирный наркоз.

7.Заражение куриных эмбрионов.Правила, способы.

Для заражения используют эмбрионы 5-11 дневного возраста . Перед заражением эмбрионы просматривают в темной комнате при помощи овоскопа для проверки их жизнеспособности (живые эмбрионы подвижны с хорошо развитыми сосудами) и опревоздушной камеры и места расположения эмбриона. Место на столе, где производят манипуляции покрывают салфеткой, смоченной в растворе хлорамина.

Заражение на хорионаллантоисную оболочку . Яйцо устанавливают в штативе в вертикальном положении тупым концом вверх. Скорлупу над воздушной камерой обрабаты­вают спиртом, йодом, повторно спиртом, обжигают, прокалывают ножни­цами небольшое отверстие, через которое в полость воздушного мешка вводят одну браншу и срезают скорлупу над ним. Затем анатомическим пинцетом захватывают в склада- и осторожко снимают внутренний листок подскорлуповой оболочки. Под ней находится хорионаллантоисная оболочка, на которую пастеровской пипеткой наносят исследуемый материал в количестве 0,2-0,5 мл. Отверстие скорлупы закрывают стерильным стеклянным колпачком, который закрепляют на яйце расплавленным парафином. Зараженное яйцо помещают в термостат при 37 0 на 48 часов.

3аражение в аллантоисную полость . После подготовительной работы скорлупу прокалывают над воздушной камерой и через небольшое отверстие вводят иглой шприца на глубину 1-1,5 см материал в объеме 0,1-0,2 мл. Отверстие заливают парафи­ном.

Заражение в амниотическую полость. После удаления скорлупы над воздушной камерой бранши пинцета вводят в аллантоисную полость в направлении эмбриона на глубину 2-2,5 см, захватывают амниотическую оболочку, выводят ее на глубину прокалывают иглой шприца и в амниотическую полость вводят материал в количестве 0,1 мл. Отверстие в скорлупе закрывают колпачком и парафинируют.

Заражение в желточный мешок . (Этим методом пользуются для выделения риккетсий). Исследуемый материал вводат 5-8-дневным эмбрионам длинной иглой (4-5 см) через небольшое отверстие в скорлупе над воздушной камерой на глубину 2-3 см. При этом надо не повредить зародыш. Во время манипуляции он должен находиться ниже желточного мешка. Просмотреть с помощью овоскопа, отметить границу воздушной камеры и место расположения эмбриона. Ввести эмбриону на хорионаллантоисную оболочку вирус осповакцины или в аллантоисную полость вирус гриппа.

Вирусы открыты русским ботаником Д.И. Ивановским (1864 – 1920 гг.) в 1892 году при исследовании мозаичной болезни листьев табака. Термин «вирус» был впервые предложен в 1898 г. голландским ученым М. Бейеринком (1851 – 1931 гг.).

В настоящее время известно около 3000 различных видов вирусов.

Размеры вирусов колеблются от 15 до 350 нм (длина некоторых нитевидных достигает 3 000 нм; 1 нм = 1·10 –9 м), т.е. большинство из них не видны в световой микроскоп (субмикроскопические) и их изучение стало возможным только после изобрете­ния электронного микроскопа.

В отличие от всех остальных организмов вирусы не имеют клеточного строения!

Зрелая вирусная частица (т.е. внеклеточная, покоящаяся – вирион ) устроена очень просто: она состоит из одной или нескольких молекул нуклеиновых кислот, составляющих сердцевину вируса, и белковой оболочки (капсид) – это так называемые простые вирусы .

Сложные вирусы (например, гер­­песа или гриппа ) кроме, белков кап­сида и нуклеиновой кислоты содержат до­полнительную липо­проте­идную мем­бра­ну (оболочку, суперкапсид образуемый из плазматической мембраны клетки хозяина), раз­­­личные углеводы и фер­менты (рис.3.1).

Ферменты способствуют проникно­ве­нию вирусной НК в клетку и выходу обра­зо­вавшихся вирионов в среду (нейраминидаза миксовирусов, АТФ-аза и лизоцим некоторых фагов и др.), а также участвуют в процессах транскрипции и репликации вирусной НК (различные транскриптазы и репликазы ).

Белковая оболочка защищает нуклеиновую кислоту от различных физических и химических воздействий, а также препятствует проникновению к ней клеточных ферментов, предотвращая тем самым ее расщепление (защитная функция). Также, в составе капсида имеется рецептор, комплементарный рецептору заражаемой клетки – вирусы поражают строго определенный круг хозяев (определительная функция).

Вирионы многих вирусов растений и ряда фагов имеют спиральный капсид, в котором белковые субъединицы (капсомеры) уло­жены по спирали вокруг оси. Например, ВТМ (вирус табачной мозаики ) имеет форму палочек диаметром 15 – 17 нм и длиной до 300 нм (рис. 3.2.). Внутри его капсида имеется полый канал диаметром 4 нм. Гене­ти­ческим материалом ВТМ явл
яется одноцепочечная РНК, плотно уло­жен­ная в желобке спирального капсида. Длявирионов со спиральным капси­дом характерно высокое содержание белка (90 – 98%) по отношению к

Рис. 3.2. Строение вируса табачной мозаики.

нуклеиновой кислоте.

Капсиды вирионов многих вирусов (например, аденовирус , вирус герпеса , вирус желтой мозаики турнепса – ВЖМТ) имеют форму симметричного мно­гогранника, чаще всего икосаэдра (многогранник с 12 вершинами, 20 треугольными гранями и 30 ребрами). Такие капсиды называют изометрическими (рис. 3.3.). В таких вирионах содержание белка составляет около 50% по отношению к НК.

В вирусе присутствует всегда один тип нуклеиновой кислоты (либо ДНК, либо РНК), поэтому все вирусы делят на ДНК-содержащие и РНК-содержащие. Молекулы нуклеиновой кислоты в вирионе могут быть линейными (РНК, ДНК) или иметь форму кольца (ДНК). Причем эти нуклеиновые кислоты могут состоять из одной цепочки или из двух. Вирусная НК имеет от 3 до 200 генов.

Нуклеиновая кислота вируса совмещает в себе функции обеих кислот (ДНК и РНК) – это хранение и передача наследственной информации, а также управление синтезом белков.

В отличие от вирусов все клеточные организмы содержат оба типа нуклеиновых кислот.

Более сложное строение име­ют вирусы бактерий – бак­те­рио­фаги (рис. 3.4.). Они со­стоят из головки и хвоста (стер­жня и чех­ла, базальной плас­тинки и нитей отростка). Длин­ная молекула НК (РНК или ДНК) сложена в виде спирали внутри головки бактерио­фага (бел­ковой оболочки).

К вирусам относятся также и вироиды – ин­фек­ционные агенты, представляющие собой низко­мо­ле­ку­лярные (короткие) одноцепо­чечные кольцевые РНК, не ко­дирующие собственные белки (ли­шены кап­сида). Являются возбу­дителями ряда заболеваний.

К

ак уже было сказано выше, вне живой клеткивирусы раз­­мно­жаться не могут. Вирус по­падает в клетку, либо впрыскивая в нее свою нуклеиновую кислоту остав­ляя при этом белковую оболочку снаружи клетки (как это делают бактериофаги ), либо при фагоци­тозе (пиноцитозе) вместе с белковой оболочкой (вирусы жи­­вотных), либо через нарушен­ную клеточную оболочку (вирусы растений).

В

Рис. 3.4. Строение бактериофага.

Нити отростка

ирусы растений распространя­ются, как правило, с помощью насекомых и нематод (круглые черви). Сосущие насекомые (например, цикады) переносят вирусы вместе с соком, который они высасывают из клеток флоэмы или эпидермиса. Также вирусы могут передаваться потомству через семена и споры.

Ученые считают, что вирусы возникли около 3 млрд. лет назад из нуклеино­вых кислот организмов (прокариотов) в результате выделения из генома свободных фрагментов, которые приобрели способность синтезировать белковую обо­лочку и делится (удваиваться, реплицироваться) внутри клеток. Высказывается мнение, что новые типы вирусов и сейчас образуются из генома бактерий и эукариот (ядра, пластид, митохондрий).

В природе вирусы имеют большое значение, так как они распространены повсеместно и поражают все группы живых организмов, часто вызывая различные заболе­вания.

Известно более 1000 заболеваний растений , вызванных вирусами (РНК-со­дер­жащие). Наиболее распространены различные некрозы (участки мертвой ткани), мозаики (пятна, крапинки, полосы на органах растений), при которых повреждаются ткани паренхимы, уменьшается количество хлоропластов, разрушается флоэма и т.д.; наблюдается морщинистость или карликовость листьев. Вирусы вызывают задержку роста растений, что приводит к снижению урожаев.

ВЖМТ – вирус желтой мозаики турнепса , ВТМ – вирус табачной мозаики , ВККТ –вирус карликовой кустистости томатов.

Появление полосок на цветках некоторых сортов тюльпанов (пестрые) также обусловлено вирусом, а ведь цветоводы продают эти тюльпаны, выдавая их за особый сорт.

У животных вирусы (ДНК- и РНК-содержащие) вызывают такие заболевания, как: ящур (у крупного рогатого скота), бешенство (у собак, лисиц, волков), миксоматоз (у крыс), саркома, лейкоз и чума (у кур) и т.д. Очень часто за­ражаются этими болезнями и люди (при контактах с зараженными животными).

У человека вирусы вызывают такие заболевания, как: оспа (вирус натуральной оспы), свинка (парамиксовирус), грипп (миксовирус), респираторные заболевания (ОРЗ; риновирусы РНК-), инфекционный гепатит , полиомиелит (детский паралич; пикорнавирус), бешенство , герпес , СПИД (вирус иммунодефицита человека – ВИЧ).

Грипп – единственное инфекционное заболевание, которое проявляется в виде периодических глобальных эпидемий, опасных для жизни человека. Инфекционные свойства вируса гриппа (поражает слизистые оболочки дыхательных путей), как и других вирусов, зависят от специфических белков вирусной оболочки, которые постоянно изменяются в результате рекомбинаций или мутаций. Поэтому новые штаммы вируса гриппа вызывают новые эпидемии, так как у человека не выработался пока к ним иммунитет.

Так, зимой 1968/69 г. в США было зарегистрировано 50 млн. случаев гонконгского гриппа, при этом 70 000 человек погибло. Эпидемия 1918/19 г. охватила весь земной шар, проходила в виде трех волн и унесла 20 млн. человеческих жизней.

Вирусные заболевания с трудом поддаются лечению, поскольку вирусы не чувствительны к антибиотикам. К счастью, во многих случаях иммунная система ограничивает дальнейшее распространение инфекции.

Многочисленные вирусные заболевания человека и животных возможно предупредить путем иммунизации – проведения профилактических прививок, которые позволяют вырабатывать иммунитет против вирусов.

Человеком вирусы широко используются в микробиологических исследова­ниях (биотехнология, генная инженерия). Возможно использование вирусов для борьбы с вредителями сельскохозяйственных культур.

В США с хлопковой совкой эффективно борются с помощью вируса. Данный метод борь­бы практически безвреден – вирус, как правило, видоспецифичен (т.е. поражает только опреде­ленный вид организма).

Также установлено, что, например, вирус некротической мозаики риса подавляет рост ри­са. А вот другие растения, например, джут (источник грубых волокон для мешков и канатов), лучше растут, когда поражены этим вирусом, чем в здоровом состоянии. Этот феномен ученые пока объяснить не могут.

Бактериофаги поражают бактерии (проникают внутрь и активно их разрушают), в том числе и болезнетворные. Поэтому возможно их использование для предупреждения и лечения многих инфекционных заболеваний, для борьбы с болезнетворными бактериями: чумой, брюшным тифом, холе­рой и др.

1. Какими свойствами обладают живые организмы?

1. Живые организмы имеют сходный химический состав и единый принцип строения.

2. Все живые организмы представляют собой открытые биологические системы, т. е. системы, устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды.

3. Все живые организмы способны к обмену веществ с окружающей средой: из неё они получают вещества, необходимые для жизни, а в неё выделяют продукты жизнедеятельности.

4. Живые организмы реагируют на изменение факторов окружающей их среды.

5. Живые организмы развиваются.

6. Всё живое размножается.

7. Все живые организмы обладают наследственностью и изменчивостью.

8. Живые организмы приспособлены к определённой среде обитания.

2. Какие нуклеиновые кислоты вы знаете?

Различают два типа нуклеиновых кислот - дезоксирибонуклеиновые (сокращённо ДНК) и рибонуклеиновые (сокращённо РНК).

3. Какие функции выполняют нуклеиновые кислоты?

Нуклеиновые кислоты являются хранителями наследственной информации, переносят наследственную информацию из ядра к рибосоме, служат матрицей для сборки полипептидной цепи.

Вопросы

1. Какое строение имеют вирусы?

Устроены вирусы очень просто. Каждая вирусная частица состоит из РНК или ДНК, заключённой в белковую оболочку, которую называют капсидом.

2. На основании чего вирусы относят к живым организмам?

От неживой материи вирусы отличаются двумя свойствами: способностью воспроизводить себе подобные формы (размножаться) и обладанием наследственностью и изменчивостью.

3. Какие особенности отличают вирусы от других живых организмов?

Вирусы вне клетки не проявляют никаких свойств живого. Они не потребляют пищи и не вырабатывают энергии, не растут, у них нет обмена веществ.

Задания

На обобщающем уровне обсудите значение молекулярной биологии в современном мире.

К сфере молекулярной биологии относится исследование всех связанных с жизнью процессов, таких, как питание и выделение, дыхание, секреция, рост, репродукция, старение и смерть. Важнейшее достижение молекулярной биологии – расшифровка генетического кода и выяснение механизма использования клеткой информации, необходимой, например, для синтеза ферментов. Молекулярнобиологические исследования способствуют и более полному пониманию других процессов жизнедеятельности – фотосинтеза, клеточного дыхания и мышечной активности.

С помощью соответствующих ферментов можно определить нуклеотидную последовательность генов, а по ней – аминокислотную последовательность синтезируемых белков. Если у животных разных видов близки нуклеотидные последовательности генов, кодирующих общие для них белки, например гемоглобин, можно заключить, что в прошлом эти животные имели общего предка. Если же различия в их генах велики, то ясно, что расхождение видов от общего предка произошло намного раньше. Такие молекулярно-биологические исследования открыли новый подход к изучению эволюции организмов.

Важный вклад в медицину должна внести идентификация вирусов по их составу. С ее помощью можно, например, установить, что вирус, вызывающий ту или иную болезнь у человека, гнездится естественным образом в каком-нибудь диком животном, от которого и передается человеку болезнь. Если у животных, которые служат в природе резервуаром данного вируса, симптомы болезни не обнаруживаются, то, видимо, здесь действует какой-то механизм иммунитета, и тогда возникает новая задача – изучить этот механизм, чтобы попытаться включить его в иммунную систему человека.

Областью молекулярной биологии, вызывающей большие споры и часто неприятие, является генная инженерия, или технология рекомбинантных ДНК, суть которой в том, что в организм растения или животного встраивают чужие гены, чтобы придать ему новые свойства или же компенсировать какие-нибудь наследственные дефекты.

Является его способность к размножению — воспроизведению потомства, сходного с родительской формой. Другим важным свойством является обладание наследственностью. Наследственным материалом служит имеющаяся у вируса нуклеиновая кислота — РНК или ДНК.

Рис. 21. Семейства вирусов

Впервые вирусы (вирус мозаики табака) были открыты отечественным учёным-ботаником Дмитрием Иосифовичем Ивановским в 1892 г. С тех пор выявлено более 1 000 различных видов. Виды объединяют в роды и семейства. Все вместе их выде-ляют в особое царство живой природы — Вирусы как неклеточную форму жизни. Более 500 разных видов вирусов могут вызывать разнообразные инфекционные заболевания человека. Семейства этих вирусов показаны на рис. 21.

Таким образом, вирусы являются уникальной формой жизни. С одной стороны, вирусы — дискретные (автономные) генетические структуры, кото-рым присущи основные свойства живых организмов: размножение, изменчи-вость, адаптация и способность к эволюции. С другой стороны, вирусы не име-ют таких важнейших свойств живого организма, как метаболизм (обмен ве-ществ и энергии), и не способны к самостоятельной репродукции своей наслед-ственности вне клетки хозяина. Весь цикл репродукции вирусов и их размно-жение происходят в клетке-хозяине и за счёт её метаболических систем.

Первооткрывателем вирусов, основоположником вирусологии яв­ляется русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)

Вирусы настолько отличаются от микроорганизмов, что выделе­ны в особое царство - царство Vira.

Особенности вирусов, отличающие их от всех других живых су­ществ:

1) наличие только одного типа нуклеиновой кислоты - ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза бел­ков;

2) отсутствие собственных белоксинтезирующих систем и клеточ­ного строения;

4) убиквитарность (распространенны повсеместно);

5) имеют микроскопические размеры.

Внеклеточная форма вируса - вирион и вирус, находящийся внут­ри клетки хозяина - это две разные формы вируса.

Вирионы разных вирусов имеют размеры от 15 до 400 наномет­ров. Нанометр - это 10 -9 метра (рис. 6). Наиболее мелкие вирусы - виру­сы полиомиелита - имеют вирион размером 17-25 им, средние - вирус гриппа - 80-120 нм, крупные - вирус оспы - 300-400 им.

В центре вириона располагается его геном. Это нуклеиновая кис­лота - ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, напри­мер у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.

Вокруг нуклеиновой кислоты симметрично располагаются белко­вые молекулы - капсомеры, составляющие капсид (лат. capsa - коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда кап­сомеры располагаются в виде двадцатигранника (икосаэдра).

У вирионов сложноорганизованных вирусов имеется еще поверхностная оболочка - суперкапсид, содержащий, кроме белков, также углево­ды, липиды, компоненты клет­ки хозяина. Строение вирио­на лежит в основе классифи­кации вирусов. По типу нук­леиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структу­ре вирионов, по месту размно­жения и по другим признакам проводится деление на семей­ства и роды.

Вследствие малых разме­ров вирусы не видны в свето­вом микроскопе. Только наи­более крупный из них - вирус оспы - можно наблюдать в виде мелких точечных образо­ваний - элементарных телец Пашена.

Размножаясь в чувствительных клетках организма, вирусы оспы, бе­шенства, гриппа образуют в них внутриклеточные включения. Их мож­но обнаружить в световом или в люминесцентном микроскопе. Обна­ружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках об­наруживаются при бешенстве.

Морфологию вирионов изучают в электронном микроскопе. Ви­русы имеют разные формы: сферическую, нитевидную, палочковидную.

Методы культивирования вирусов:

1. Заражение животных (в\брюшинно, в\в, в\м, интраназально, заражение в мозг и другие)

2. На куриных эмбрионах после заражения их на хорион – аллантоисную оболочку, в аллантоисную полость, в амниотическую полость, в желточный мешок.

3. На культуре клеток различных тканей.

Культура ткани – это клетки ткани, выращенные вне организма на специальной питательной среде. Клетки ткани в искусственных условиях сохраняют присущий им обмен веществ и восприимчивость к определенным вирусам. Наиболее пригодными для культивирования вирусов являются клетки с быстрым росток и высоким обменом веществ. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбрионов, клетки амниона человека и др.), а также культуры тканей опухолей. Выращивание клеток культур тканей производят в специальных флаконах (колбы – матрицы, флаконы Карреля и др.) и в пробирках. Культура клеток для роста должна иметь какую – либо опору, например, пластинки стекла, стенку пробирки. В выросшую культуру ткани, которая покрывает стенку сосуда или пластинку стекла в виде однослойного клеточного пласта, засевают материал, содержащий вирус. Работу производят в стерильных условиях. Для подавления роста другой микрофлоры (кроме вирусов) вируссодержащий материал предварительно обрабатывают антибиотиками, чаще пенициллином и стрептомицином. Размножение вируса в клетках определяют по цитопатическому действию (ЦПД): в результате размножения вируса в клетках при микроскопии обнаруживаются включения, дегенеративные изменения и в конечном итоге клетки гибнут. Так как рост клеток прекращается, ph среды мало изменяется по сравнению с контролем (клетки без вируса). В связи с этим не изменяется и цвет среды. Питательной средой для культуры тканей могут быть различные растворы, состав которых приближается к составу жидкостей организма (синтетическая среда 199, солевой раствор Хенкса с сывороткой, гидролизат лактальбумина с сывороткой и другие). В настоящее время в вирусологической практике чаще всего применят свежие культуры клеток (первичные или первично – трипсинизированные) и перевиваемые культуры (линии) клеток.

Первично – трипсинизированные культуры клеток готовят из органов взрослых животных (чаще из почек обезьян и других животных) и эмбрионов человека, куриных фиброфластов путем трипсинизации кусочков тканей с последующим культивированием в питательной среде. С этой целью кусочки тканей измельчают ножницами (или другим способом), а затем промывают буферным раствором Хенкса для удаления крови и обрабатывают 0,25 – 0,3 % раствором трипсина. Трипсин разрушает межклеточные мостики и освобождает клетки. С помощью камеры Горяева подсчитывают количество клеток, разводят до концентрации 400 тыс. клеток в 1 мл. Полученную взвесь клеток разливают в пробирки, плотно закрывают стерильными резиновыми пробками и помещают в термостат при 37°С в почти горизонтальном положении (под углом 50°) в специальных штативах. Через 3-4 дня на стенке пробирки образуется сплошной слой размножившихся клеток. Пробирки с хорошим ростом ткани отбирают для заражения вирусом.

Перевиваемые культуры клеток (растущие) - это стабильные линии клеток, пассируемые вне организма в течение многих лет. Их получают из злокачественных опухолей и из нормальных (эмбриональных) тканей человека и животных. К ним относятся: 1) линия Hela – клетки карциномы шейки матки человека; 2)линия Hep – 2 – клетки злокачественной опухоли гортани человека; 3) линия Детройт – 6 – клетки, выделенные из костного мозга человека, больного раком легких; 4) линии А – 0 и А – 1 – клетки амниона человека; 5) линия СОЦ – клетки сердца обезьяны циномольгус и другие.

Полуперевиваемые или диплоидные культуры клеток – это клетки тканей человека, сохраняющие в процессе пассажей – диплоидный набор хромосом. Диплоидные клетки человека не подвергаются злокачественному перерождению и этим выгодно отличаются от опухолевых.