Переменный ток сокращение. Переменный ток

ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Переменный электрический ток – это электрический ток, изменяющийся во времени. К переменному току относят различные виды импульсных, пульсирующих периодических и квазипериодических токов. В технике под переменным током обычно подразумевают периодические токи переменного направления. Чаще всего применяется переменный ток, сила которого меняется во времени по гармоническому закону (гармонический , или синусоидальный переменный ток).

Рассмотрим процессы, происходящие в цепях, по которым протекает переменный гармонический ток. Предположим, что режим прохождения тока установился, т.е. собственные колебания в цепи затухли, и физические процессы в цепи представляют собой вынужденные колебания. Такие предположения позволяют избежать математических трудностей, связанных с решением дифференциальных уравнений, и существенно упростить анализ процессов происходящих в цепях переменного тока.

Рассмотрим частные случаи, когда переменное напряжение U (t ) = U 0 ·coswt подается или на сопротивление R , или на емкость C , или на индуктивность L .

Сопротивление R

Если в качестве нагрузки выступает активное сопротивление R , то ток в цепи определяется соотношением:

Емкость С

Если цепь состоит только из емкости C , то изменение тока со временем определяется скоростью изменения заряда конденсатора I = dq /dt . Так как q = C ·U (t ), то

, (15)

где I 0 = w·C ·U 0.

То есть ток в цепи, состоящей только из емкости, изменяется со временем, так же как и напряжение, по синусоиде, но опережает по фазе напряжение на . Временнáя зависимость напряжения и силы тока в такой цепи представлена на рис. 15.

Кроме того, видно, что если ввести понятие емкостного сопротивления , то амплитудные значения напряжения U 0 и тока I 0 связаны законом Ома

. (16)

Сдвиг по фазе можно объяснить следующим образом. Возьмем заряженный конденсатор, который начинает разряжаться. Это значит, что напряжение начинает убывать, а ток - увеличиваться по абсолютной величине. Когда напряжение на обкладках конденсатора окажется равным нулю, ток достигнет максимума. Далее происходит изменение знака напряжения, что соответствует перезарядке конденсатора. После чего напряжение по абсолютной величине начинает увеличиваться, а сила тока уменьшаться. Описанные процессы иллюстрируют возникновение сдвига по фазе между напряжением и силой тока на .

Индуктивность L

Пусть через катушку (соленоид), характеризующуюся постоянной самоиндукции (или индуктивностью ) L , проходит переменный ток I (t ) = I 0 ·coswt .

По закону электромагнитной индукции (Фарадея - Ленца) в любом замкнутом контуре при изменении магнитного потока через поверхность (площадь), ограниченную этим контуром, возникает ЭДС индукции E, пропорциональная скорости изменения магнитного потока

,

где Φ – магнитный поток, k – коэффициент (в системе СИ k = 1). Знак «минус» означает, что направление индукционного тока таково, что создаваемое им магнитное поле препятствует изменению первичного магнитного потока.

Частным случаем проявления этого эффекта является возникновение самоиндукции при любых изменениях тока в цепи. В простейшем случае (при отсутствии ферромагнетиков) Φ = L ·I , где L – индуктивность проводника, зависящая от его размеров, формы и свойств среды. Изменения тока вызывают изменения создаваемого им магнитного потока, что в свою очередь приводит к появлению ЭДС самоиндукции E, равной

Согласно (14), (16) и (19) закон Ома справедлив для амплитудных значений напряжения и тока.

Закон Ома для мгновенных значений переменного тока можно использовать только для случая активного сопротивления R .

Величину переменного тока можно охарактеризовать амплитудными значениями тока или напряжения. Это целесообразно делать, например , при подборе изоляции каких-либо электротехнических деталей, так как «пробои» возникают именно в моменты, когда переменное напряжение достигает максимальных значений.

На практике обычно вводят понятие эффективных (действующих ) значения величин силы тока I эфф и напряжения U эфф, чтобы формула для поглощаемой (отдаваемой сопротивлению) мощности имела тот же вид, что и для цепей постоянного тока :

Легко показать, что эффективное значение переменного тока I эфф равно такому значению постоянного тока I , который выделяет на

сопротивлении R за одно и то же время t столько же тепла Q , что и данный переменный ток.

В обозначениях переменного напряжения U , и силы тока I , под U и I обычно понимают эффективные значения тока и напряжения. Напряжение сети переменного тока «220В» является именно эффективным напряжением, и именно эффективные значения тока и напряжения измеряют амперметры и вольтметры.

ПОНЯТИЕ О ВЕКТОРНЫХ ДИАГРАММАХ

Реальные электрические цепи представляют какие-либо комбинации простейших элементов R , C и L .

Чтобы определить связь между током и напряжением в цепи, включающей несколько различных элементов, необходимо уметь складывать гармонические колебания одной частоты, но с разными амплитудами и фазами . Такую задачу аналитически бывает решить сложно, но существует графический метод, позволяющий сделать это достаточно просто и наглядно, – это метод векторных диаграмм .


Данный метод основан на том, что изменяющуюся по гармоническому закону величину, например , a (t ) = A 0 ·sin(wt + j) (или a (t ) = A 0 ·cos(wt + j)), можно представить как проекцию на ось ординат (или ось абсцисс) радиус-вектора, вращающегося против часовой стрелки с угловой скоростью w (рис. 16) – a 1 = A 0 ·sinωt 1 , a 2 = A 0 ·sinωt 2 .

Длина такого вектора должна быть равна амплитуде колебаний, т.е. в данном случае равна A 0 1. Начальное его положение при t = 0 должно составлять с осью X угол j (j – начальная фаза колебаний). Совокупность нескольких векторов, изображающих гармонически изменяющиеся величины одной и той же частоты называется векторной диаграммой .

Взаимная ориентация векторов сохраняется в любой момент времени, если складываемые колебания имеют одну и ту же частоту, поэтому для построения векторных диаграмм токов и напряжений достаточно указать их фазовые углы в момент t = 0.


При построении векторных диаграмм используется математическая теорема, согласно которой проекция геометрической суммы векторов на любую ось равна алгебраической сумме их проекций на ту же ось . Поэтому задача сложения выражений типа U (t ) = U 0 ·sin(wt + j) сводится к простой графической задаче сложения векторов (рис. 17 – u 1 = U 10 ·sinφ 1 , u 2 = U 20 ·sinφ 2 , u = u 1 + u 2 = U 0 ·sinφ).

Последовательное соединение элементов

Рассмотрим последовательное соединение емкости, индуктивности и активного сопротивления, к которым приложено переменное напряжение U (t ) = U 0 ·coswt (рис. 18).

В случае последовательного соединения в каждый момент времени сила тока во всех участках цепи одна и та же, а сумма мгновенных падений напряжения на элементах равна значению приложенного к цепи напряжения в тот же момент времени:

U R совпадает по фазе с током, значит, вектор U 0R направлен так же как вектор I 0 , U C отстает от тока на p/2, значит, U 0C развернут на p/2 «назад» относительно U 0R , а U 0L , соответственно «вперед» (рис. 19,а ). Поскольку эти векторы вращаются с одной частотой w против часовой стрелки, то их взаимное расположение друг относительно друга не изменяется, и найти суммарное напряжение U 0 можно в любой момент времени (рис. 19,б ).

Из рис. 19,б видно, что

Величина называется полным сопротивлением цепи или импедансом , а формула (26) - обобщенным законом Ома . По аналогии с треугольником, образуемым амплитудными значениями падений напряжения, можно построить треугольник сопротивлений (рис. 20) Графически полное сопротивление будет представлять собой гипотенузу прямоугольного треугольника. Один катет такого треугольника равен R – его называют активным сопротивлением . Другой катет равен (w·L – ), эту составляющую полного сопротивления называют реактивным сопротивлением и обычно обозначают X :

При условии w·L = полное сопротивление цепи минимально и равно активному сопротивлению R 0 . Формула (26) показывает, что величина переменного тока в цепи существенно зависит от его частоты. При частоте w = амплитудные значения тока принимают максимальные значения I 0max = U 0 /R . Такое явление называют резонансом напряжений, а частоту w = называют резонансной частотой электрической цепи . Величина тока при резонансе получается тем больше, чем меньше активное сопротивление цепи.

Параллельное соединение элементов

Рассмотрим цепь переменного тока, содержащую параллельно соединенные элементы R , L и C (рис. 21).

Пусть U (t ) = U 0 ·coswt . Напряжение на всех элементах цепи одинаково и равно U (t ). Мгновенное значение тока в неразветвленной части цепи I (t ) равно сумме токов в параллельных участках:

I (t ) = I R (t ) + I C (t ) + I L (t ). (29)

В этом случае удобно строить векторную диаграмму для токов.

С учетом, что ток через сопротивление находится в фазе с приложенным напряжением, ток через участок, содержащий С , опережает напряжение на , а через участок, содержащий L , отстает от напряжения на , векторную диаграмму можно изобразить следующим образом (рис. 22).

Из диаграммы видно, что

Воспользовавшись векторной диаграммой и формулой (31), нетрудно получить выражения для амплитуды тока через неразветвленную часть цепи и для сдвига по фазе между приложенным напряжением и током

При условии, что w·L = , сдвиг фаз между током в неразветвленной части цепи и напряжением равен нулю (j = 0). При этом токи I L и I C находятся в противофазе и численно равны. Эти токи могут превосходить ток в подводящих проводах, что требует особенно внимательного соблюдения правил техники безопасности . Такая ситуация называется резонансом токов . При этом происходит периодический обмен энергией между электрическими и магнитными полями в емкости и индуктивности, а источник питания только компенсирует потери энергии на нагревание сопротивления R .

Резонанс токов в цепи с параллельным соединением элементов приводит к тому, что ток во внешней цепи имеет наименьшее значение.

Если убрать сопротивление R , то ток в подводящих проводах будет равен нулю, хотя в контуре, состоящем из L и C , ток может быть очень большим. Это устройство используется в резонансных усилителях, в которых колебательный контур настраивается на частоту сигнала, который требуется усилить.

МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА

Напомним, что мощностью называется физическая величина, численно равная работе в единицу времени. Элементарная работа dA по переносу заряда dq , совершенная за время dt на участке цепи с падением напряжения U , определяется выражением

dA = U ·dq .

Тогда мгновенная мощность:

Мгновенная мощность переменного тока также является величиной переменной. Для оценки энергетических свойств электроустановок используется значение средней мощности.

Для определения средней мощности P достаточно подсчитать работу тока за один период колебания T :

Интеграл от первого слагаемого в квадратных скобках есть среднее значение косинуса за период и, следовательно, обращается в ноль. Таким образом, получили

. (41)

Величину P = I ·U ·cosφ называют активной мощностью или средней мощностью , или просто мощностью переменного тока . Активная мощность в системе СИ измеряется в ваттах (1 Вт = 1 В ´ 1 А). Прибор, предназначенный для регистрации активной мощности, называется ваттметром (подробнее об устройстве и принципе действия ваттметра см. раздел «Ваттметр» в главе «Электроизмерительные приборы»).

Кроме активной мощности в теории переменных токов рассматривают полную (кажущуюся) мощность S = I ·U иреактивную мощность Q = I ·U ·sinj.

Для того чтобы понять смысл реактивной мощности, рассмотрим энергетические процессы в цепи переменного тока, содержащей индуктивность L . В такой цепи потребление мощности в каждый момент времени не сводится только к выделению тепла. В той части периода, где ток нарастает, в катушке индуктивности L возбуждается магнитное поле, на что расходуется энергия источника. Когда же ток начинает уменьшаться, энергия, запасенная магнитным полем катушки, возвращается обратно источнику. Таким образом, индуктивность является то потребителем, то генератором энергии, а в среднем за период расход энергии в индуктивности равен нулю.

Аналогичные колебания происходят в цепи переменного тока, содержащей емкость C . В этом случае энергия запасается в электрическом поле конденсатора. Реактивная мощность Q не совершает никакой полезной работы, однако, она оказывает существенное влияние на режим функционирования электрических цепей. Поэтому расчет проводов и других элементов цепей переменного тока производят, исходя из полной мощности, которая учитывает активную и реактивную составляющие.

Очевидно, что активная P, реактивная Q и полная S мощности имеют одинаковую размерность. Однако в электротехнике, в отличие от единиц активной мощности, для удобства полную мощность принято измерять в вольт-амперах (ВА), а единица измерения реактивной мощности Q вольт-ампер реактивный (ВАр).

Каким образом величины P , S и Q связаны между собой?

Для наглядности рассмотрим векторную диаграмму напряжений для последовательной цепи переменного тока, содержащей R , L и C , изображенную на рис. 23.

Разделив стороны векторного треугольника напряжений на величину силы тока I , получаем треугольник сопротивлений A′0′B′ (рис. 23,б ), который уже не будет векторным. Умножив стороны треугольника напряжений на I , получаем треугольник мощностей A″0″B″, также не векторный (рис. 23,в ). Очевидно, что эти три треугольника подобны. Сопоставляя стороны треугольника мощностей и треугольника напряжений, заключаем:

И, как видно из треугольника A″0″B″, справедливо соотношение:

где R – активное сопротивление цепи, X – реактивное сопротивление, X L = wL – индуктивное сопротивление, X C = – емкостное сопротивление, – полное сопротивление (импеданс) цепи переменного тока.

Если известны индуктивная Q L i и емкостная Q C i составляющие реактивной мощности и активная P i мощность каждого i -го потребителя, то полная мощность, на которую должен рассчитываться источник, составляет

. (50)

Величина cosj, стоящая в выражении для активной мощности (см. формулу (44)), показывает, какая часть полной мощности цепи приходится на долю активной мощности, поэтому cosj называют коэффициентом мощности .

Из формулы (50) видно, что коэффициент мощности можно увеличить, уменьшая второе слагаемое под корнем. Большинство промышленных потребителей (трансформаторы, электродвигатели) потребляют индуктивную реактивную мощность. Для уменьшения такой реактивной мощности параллельно индуктивной нагрузке включают емкость.


Подробнее о целесообразности введения эффективных значений тока и напряжения см. в разделе «Мощность переменного тока».

1 При построении векторной диаграммы можно вместо амплитудных значений использовать эффективные (см. предыдущий раздел).

Подробнее см. в разделе «Приложения. Построение векторных диаграмм».

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) - это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T) - длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;
  • Частота (f) - параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения - 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.
  • Амплитуда тока (Im) - максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика - высота синусоиды;
  • Фаза - состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

Движение электронов в проводнике

Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения. Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).

Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.

Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.

Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).

История изучения

Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.

Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.

Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.

Основные закономерности и силы в электрическом токе

Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.

Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).

Движение зарядов при этом совершается работа

Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
.

В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).

Разновидности, характеристики и единицы измерения

Электрический ток может быть или переменным , или постоянным .

Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.

Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).

В последние десятилетия очень большое распространение получил трехфазный ток. Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.


Почти все современные генераторы производят трёхфазный электроток.

  • Сила и количество тока

Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.

В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.

  • Напряжение

Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).

  • Электрическое сопротивление

Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.

  • Электрическая емкость

Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).

  • Мощность и работа электрического тока

Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).

Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.

Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность (скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.

Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.

Для того, чтобы замерять мощность электроцепи используют ваттметр

Какой вид тока эффективнее и какая между ними разница?

Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.

В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.

Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.

Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).

Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природныедвух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

§ 50. Основные величины, характеризующие переменный ток

Переменная э. д. с., переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом . Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э. д. с. совершается за 1/50 сек , то период этой э. д. с. равен 1/50 сек .
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой . Частота обозначается буквой f и измеряется в герцах (гц ). При измерении больших частот пользуются единицами килогерц (кгц ) и мегагерц (Мгц ); 1 кгц = 1000 гц , 1 Мгц = 1000 кгц , 1 Мгц = 1 000 000 гц = 10 6 гц . Чем больше частота переменного тока, тем короче период. Таким образом, частота - величина, обратная периоду.

Пример. Длительность одного периода переменного тока равна 1/500 сек . Определить частоту тока.
Решение . Одно полное изменение переменного тока происходит за 1/500 сек . Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота

Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.

Пример. Частота тока равна 2000 гц (2 кгц ). Определить период этого переменного тока.
Решение . За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока - один период совершается за 1/2000 долю секунды. Но основании этого период

Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан. (1 рад = 57° 17′ 44″; π = 3,14.) Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду

Соответственно угловая скорость вращения этого витка выражается в рад/сек и определяется отношением Эта величина называется угловой частотой и обозначается буквой ω.
Таким образом,

Так как частота переменного тока то, подставляя это значение f в выражение угловой частоты, получим:

Угловая частота ω, выраженная в рад/сек , больше частоты тока f , выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц , то угловая частота

ω = 2πf = 2 · 3,14 · 50 = 314 рад/сек

В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц . В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения - U m , тока - I m .
На рис. 51 видно, что переменная э. д. с. достигает своего значения два раза за один период.


Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, но и в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением r ом протекает переменный электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорционально максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

E m = E · 1,41; U m = U · 1,41; I m = I · 1,41; (55)

Пример. Вольтметр, подключенный к зажимам цепи, показывает действующее напряжение U = 127 в . Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение . Максимальное значение напряжения больше действующего в раз, поэтому

U m = U · = 127 · 1,41 = 179,07 в

Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.


Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э. д. с., напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, как меняется э. д. с., т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э. д. с. до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На рис. 52 показаны моменты вращения двух проводников в магнитном поле и графики изменения э. д. с. в проводах. Провод 1 и провод 2 смещены на угол φ = 90°. При пересечении магнитного потока в каждом из проводов возникает переменная э. д. с. Когда в проводе 2 электродвижущая сила равна нулю, в проводе 1 она будет максимальной. В проводе 2 э. д. с. постепенно увеличивается и достигает максимального значения в момент t 1 , а в проводе 1 индуктируемая э. д. с. постепенно убывает и в этот же момент времени равна нулю. Таким образом, индуктируемые в проводах э. д. с. не совпадают по фазе, а сдвинуты одна относительно другой по фазе на 1/4 периода или на угол φ = 90°. Кроме того, э. д. с. в проводе 1 раньше достигает максимума, чем э. д. с. в проводе 2 , и поэтому считают, что электродвижущая сила е 1 опережает по фазе э. д. с. е 2 или э. д. с. е 2 отстает по фазе от э. д. с. е 1 . При расчетах цепей переменного тока важное практическое значение имеет сдвиг фаз между переменными напряжением и током.