Питания компьютера постоянным напряжением 220 в. Блок питания ATX. Внутреннее устройство и принцип работы источников питания для компьютера

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Указанные обозначения:

  • А – блок сетевого фильтра;
  • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
  • С – каскад вспомогательного преобразователя;
  • D – выпрямитель;
  • E – блок управления;
  • F – ШИМ-контроллер;
  • G – каскад основного преобразователя;
  • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
  • J – система охлаждения БП (вентилятор);
  • L – блок контроля выходных напряжений;
  • К – защита от перегрузки.
  • +5_SB – дежурный режим питания;
  • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
  • PS_On – сигнал управляющий запуском БП.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.


Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.


Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Перечень возможных неисправностей

Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

  • перегорает сетевой предохранитель;
  • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
  • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
  • нет сигнала P.G. (PW_OK);
  • БП не включается дистанционно;
  • не вращается вентилятор охлаждения.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.


Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;

  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;

  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение, с большой вероятностью, вывело эти радиодетали из строя;

  • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам и выравнивающие сопротивления;

  • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при ).

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;

  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;


  • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

Доработка БП

В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

  • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
  • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
  • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
  • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
  • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Введение

Неотъемлемой частью каждого компьютера является блок питания. Он важен так же, как и остальные части компьютера. При этом покупка блока питания осуществляется достаточно редко, т.к. хороший БП может обеспечить питанием несколько поколений систем. Учитывая все это к приобретению блока питания необходимо отнестись очень серьезно, так как судьба компьютера в прямой зависимости от работы блока питания.

Для осуществления гальванической развязки достаточно изготовить трансформатор с необходимыми обмотками. Но для питания компьютера нужна немалая мощность, особенно для современных ПК. Для питания компьютера пришлось бы изготовлять трансформатор, который имел бы не только большой размер, но и очень много весил. Однако с ростом частоты питающего тока трансформатора для создания того же магнитного потока необходимо меньше витков и меньше сечение магнитопровода. В блоках питаниях, построенных на основе преобразователя, частота питающего напряжения трансформатора в 1000 и более раз выше. Это позволяет создавать компактные и легкие блоки питания.

Простейший импульсный БП

Рассмотрим блок-схему простого импульсного блока питания, который лежит в основе всех импульсных блоков питания.

Блок схема импульсного блока питания.

Первый блок осуществляет преобразование переменного напряжения сети в постоянное. Такой преобразователь состоит из диодного моста, выпрямляющего переменное напряжение, и конденсатора, сглаживающего пульсации выпрямленного напряжения. В этом боке также находятся дополнительные элементы: фильтры сетевого напряжения от пульсаций генератора импульсов и термисторы для сглаживания скачка тока в момент включения. Однако эти элементы могут отсутствовать с целью экономии на себестоимости.

Следующий блок - генератор импульсов, который генерирует с определенной частотой импульсы, питающие первичную обмотку трансформатора. Частота генерирующих импульсов разных блоков питания различна и лежит в пределах 30 - 200 кГц. Трансформатор осуществляет главные функции блока питания: гальваническую развязку с сетью и понижение напряжения до необходимых значений.

Переменное напряжение, получаемое от трансформатора, следующий блок преобразует в постоянное напряжение. Блок состоит из диодов выпрямляющих напряжение и фильтра пульсаций. В этом блоке фильтр пульсаций намного сложнее, чем в первом блоке и состоит из группы конденсаторов и дросселя. С целью экономии производители могут устанавливать конденсаторы малой емкости, а также дроссели с малой индуктивностью.

Первый импульсный блок питания представлял собой двухтактный или однотактный преобразователь. Двухтактный означает, что процесс генерации состоит из двух частей. В таком преобразователе по очереди открываются и закрываются два транзистора. Соответственно в однотактном преобразователе один транзистор открывается и закрывается. Схемы двухтактного и однотактного преобразователей представлены ниже.

Принципиальная схема преобразователя.

Рассмотрим элементы схемы подробнее:

    Х2 - разъем источник питания схемы.

    Х1 - разъем с которого снимается выходное напряжение.

    R1 - сопротивление, задающее начальное небольшое смещение на ключах. Оно необходимо для более стабильного запуска процесса колебаний в преобразователе.

    R2 - сопротивление, которое ограничивает ток базы на транзисторах, это необходимо для защиты транзисторов от сгорания.

    ТР1 - Трансформатор имеет три группы обмоток. Первая выходная обмотка формирует выходное напряжение. Вторая обмотка служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов.

В начальный момент включения первой схемы транзистор немного приоткрыт, т.к. к базе через резистор R1 приложено положительное напряжение. Через приоткрытый транзистор протекает ток, который также протекает и через II обмотку трансформатора. Ток, протекающий через обмотку, создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках трансформатора. В следствии на обмотке III создается положительное напряжение, которое еще больше открывает транзистор. Процесс происходит до тех пор, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору выходной ток остается неизменным.

Так как напряжение в обмотках генерируется только в случае изменения магнитного поля, его роста или падения, то отсутствие роста тока на выходе транзистора, следовательно, приведет к исчезновению ЭДС в обмотках II и III. Пропадание напряжения в обмотке III приведет к уменьшению степени открытия транзистора. И выходной ток транзистора уменьшится, следовательно, и магнитное поле будет уменьшаться. Уменьшение магнитного поля приведет к созданию напряжения противоположной полярности. Отрицательное напряжение в обмотке III начнет еще больше закрывать транзистор. Процесс будет длиться до тех пор, пока магнитное поле полностью не исчезнет. Когда магнитное поле исчезнет, отрицательное напряжение в обмотке III тоже исчезнет. Процесс снова начнет повторяться.

Двухтактный преобразователь работает по такому же принципу, но отличие в том, что транзисторов два, и они по очереди открываются и закрываются. То есть когда один открыт - другой закрыт. Схема двухтактного преобразователя обладает большим преимуществом, так как использует всю петлю гистерезиса магнитного проводника трансформатора. Использование только одного участка петли гистерезиса или намагничивание только в одном направлении приводит к возникновению многих нежелательных эффектов, которые снижают КПД преобразователя и ухудшают его характеристики. Поэтому в основном везде применяется двухтактная схема преобразователя с фазосдвигающим трансформатором. В схемах, где нужна простота, малые габариты, и малая мощность все же используется однотактная схема.

Блоки питания форм-фактора АТХ без коррекции коэффициента мощности

Преобразователи, рассмотренные выше, хоть и законченные устройства, но в практике их использовать неудобно. Частота преобразователя, выходное напряжение и многие другие параметры «плавают», изменяются в зависимости от изменения: напряжения питания, загруженности выхода преобразователя и температуры. Но если ключами управлять контроллером, который бы мог осуществлять стабилизацию и различные дополнительные функции, то можно использовать схему для питания устройств. Схема блока питания с применением ШИМ-контроллера довольно проста, и, в общем, представляет собой генератор импульсов, построенный на ШИМ-котроллере.

ШИМ - широтно-импульсная модуляция. Она позволяет регулировать амплитуду сигнала прошедшего ФНЧ (фильтр низких частот) с изменением длительности или скважности импульса. Главные достоинства ШИМ это высокое значение КПД усилителей мощности и большие возможности в применении.

Схема простого блока питания с ШИМ контроллером.

Данная схема блока питания имеет небольшую мощность и в качестве ключа использует полевой транзистор, что позволяет упростить схему и избавиться от дополнительных элементов, необходимых для управления транзисторных ключей. В блоках питания большой мощности ШИМ-контроллер имеет элементы управления («Драйвер») выходным ключом. В качестве выходных ключей в блоках питаниях большой мощности используются IGBT-транзисторы.

Сетевое напряжение в данной схеме преобразуется в постоянное напряжение и чрез ключ поступает на первую обмотку трансформатора. Вторая обмотка служит для питания микросхемы и формирования напряжения обратной связи. ШИМ-котроллер генерирует импульсы с частотой, которая задана RC-цепочкой подключенной к ножке 4. Импульсы подаются на вход ключа, который их усиливает. Длительность импульсов изменяется в зависимости от напряжения на ножке 2.

Рассмотрим реальную схему АТХ блока питания. Она имеет намного больше элементов и в ней присутствуют еще дополнительные устройства. Красными квадратами схема блока питания условно поделена на основные части.

Схема АТХ блока питания мощностью 150-300 Вт.

Для питания микросхемы контроллера, а также формирования дежурного напряжения +5, которое используется компьютером, когда он выключен, в схеме находиться еще один преобразователь. На схеме он обозначен как блок 2. Как видно он выполнен по схеме однотактного преобразователя. Во втором блоке также есть дополнительные элементы. В основном это цепочки поглощения всплесков напряжений, которые генерируются трансформатором преобразователя. Микросхема 7805 - стабилизатор напряжения формирует дежурное напряжение +5В из выпрямленного напряжения преобразователя.

Зачастую в блоке формирования дежурного напряжения установлены некачественные или дефектные компоненты, что вызывает снижение частоты преобразователя до звукового диапазона. В результате чего из блока питания слышен писк.

Так как блок питания питается от сети переменного напряжения 220В, а преобразователь нуждается в питании постоянным напряжением, напряжение необходимо преобразовать. Первый блок осуществляет выпрямление и фильтрацию переменного сетевого напряжения. В этом блоке также находится заграждающий фильтр от помех, генерируемых самим блоком питания.

Третий блок это ШИМ-контроллер TL494. Он осуществляет все основные функции блока питания. Защищает блок питания от коротких замыканий, стабилизирует выходные напряжения и формирует ШИМ-сигнал для управления транзисторными ключами, которые нагружены на трансформатор.

Четвертый блок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL494 генерирует сигнал слабой мощности, первая группа транзисторов усиливает этот сигнал и передает его первому трансформатору. Вторая группа транзисторов, или выходные, нагружены на основной трансформатор, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от высокого напряжения.

Пятый блок состоит из диодов Шоттки, выпрямляющих выходное напряжение трансформатора, и фильтра низких частот (ФНЧ). ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей. На выходе ФНЧ стоят резисторы, которые нагружают его. Эти резисторы необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения.

Оставшиеся элементы, не обведенные в блоке это цепочки, формируют «сигналы исправности». Этими цепочками осуществляется работа защиты блока питания от короткого замыкания или контроль исправности выходных напряжений.

Блок питания АТХ мощностью 200 Вт.

Теперь посмотрим, как на печатной плате блока питания мощностью 200 Вт расположены элементы. На рисунке показаны:

    Конденсаторы, выполняющие фильтрацию выходных напряжений.

    Место не распаянных конденсаторов фильтра выходных напряжений.

    Катушки индуктивности, выполняющие фильтрацию выходных напряжений. Более крупная катушка играет роль не только фильтра, но и еще работает в качестве ферромагнитного стабилизатора. Это позволяет немного снизить перекосы напряжений при неравномерной нагрузке различных выходных напряжений.

    Микросхема ШИМ-стабилизатора WT7520.

    Радиатор на котором установлены диоды Шоттки для напряжений +3.3В и +5В, а для напряжения +12В обычные диоды. Необходимо отметить, что часто особенно в старых блоках питаниях, на этом же радиаторе размещаются дополнительно элементы. Это элементы стабилизации напряжений +5В и +3,3В. В современных блоках питаниях размещаются на этом радиаторе только диоды Шоттки для всех основных напряжений или полевые транзисторы, которые используются в качестве выпрямительного элемента.

    Основной трансформатор, который осуществляет формирование всех напряжений, а также гальваническую развязку с сетью.

    Трансформатор, формирующий управляющие напряжения для выходных транзисторов преобразователя.

    Трансформатор преобразователя, формирующий дежурное напряжение +5В.

    Радиатор, на котором размещены выходные транзисторы преобразователя, а также транзистор преобразователя формирующего дежурное напряжение.

    Конденсаторы фильтра сетевого напряжения. Их не обязательно должно быть два. Для формирования двухполярного напряжения и образования средней точки устанавливают два конденсатора равной емкости. Они делят выпрямленное сетевое напряжение пополам, тем самым формируя два напряжения разной полярности, соединенных в общей точке. В схемах с однополярным питанием конденсатор один.

    Элементы фильтра сети от гармоник (помех), генерирующихся блоком питания.

    Диоды диодного моста, осуществляющие выпрямление переменного напряжения сети.

Блок питания АТХ мощностью 350 Вт.

Блок питания 350 Вт устроен эквивалентно. Сразу бросается в глаза больших размеров плата, увеличенные радиаторы и большего размера трансформатор преобразователя.

    Конденсаторы фильтра выходных напряжений.

    Радиатор, охлаждающий диоды, выпрямляющие выходное напряжение.

    ШИМ-контролер АТ2005 (аналог WT7520), осуществляющий стабилизацию напряжений.

    Основной трансформатор преобразователя.

    Трансформатор, формирующий управляющее напряжение для выходных транзисторов.

    Трансформатор преобразователя дежурного напряжения.

    Радиатор, охлаждающий выходные транзисторы преобразователей.

    Фильтр сетевого напряжения от помех блока питания.

    Диоды диодного моста.

    Конденсаторы фильтра сетевого напряжения.

Рассмотренная схема долго применялась в блоках питаниях и сейчас иногда встречается.

Блоки питания формата АТХ с коррекцией коэффициента мощности.

В рассмотренных схемах нагрузкой сети служит конденсатор, подключаемый к сети через диодный мост. Заряд конденсатора происходит только в том случае если на нем напряжение меньше чем сетевое. В результате ток носит импульсный характер, что имеет множество недостатков.

Мостовой выпрямитель напряжения.

Перечислим эти недостатки:

  • токи вносят в сеть высшие гармоники (помехи);
  • большая амплитуда тока потребления;
  • значительная реактивная составляющая в токе потребления;
  • сетевое напряжение не используется в течение всего периода;
  • КПД таких схем имеет небольшое значение.

Новые блоки питания имеют усовершенствованную современную схему, в ней появился еще один дополнительный блок - корректор коэффициента мощности (ККМ). Он осуществляет повышение коэффициента мощности. Или более простым языком убирает некоторые недостатки мостового выпрямителя сетевого напряжения.

Формула полной мощности.

Коэффициент мощности (КМ) характеризует, сколько в полной мощности активной составляющей и сколько реактивной. В принципе, можно сказать, а зачем учитывать реактивную мощность, она же мнимая и не несет пользу.

Формула коэффициента мощности.

Допустим, у нас есть некий прибор, блок питания, с коэффициентом мощности 0,7 и мощностью 300 Вт. Видно из расчетов, что наш блок питания имеет полную мощность (сумму реактивной и активной мощности) больше, чем указанная на нем. И эту мощность должна дать сеть питания 220В. Хотя эта мощность не несет пользы (даже счетчик электричества ее не фиксирует) она все же существует.

Расчет полной мощности блока питания.

То есть внутренние элементы и сетевые провода должны быть рассчитаны на мощность 430 Вт, а не 300 Вт. А представьте себе случай, когда коэффициент мощности равен 0,1 … Из-за этого ГОРСЕТЬЮ запрещается использовать приборы с коэффициентом мощности менее 0,6, а в случае обнаружения таковых на владельца налагается штраф.

Соответственно кампаниями были разработанные новые схемы блоков питания, которые имели ККМ. Вначале в качестве ККМ использовался включенный на входе дроссель большой индуктивности, такой блок питания называют блок питания с PFC или пассивным ККМ. Подобный блок питания обладает повышенным КМ. Для достижения нужного КМ необходимо оснащать блоки питания большим дросселем, так как входное сопротивление блока питания носит емкостной характер из-за установленных конденсаторов на выходе выпрямителя. Установка дросселя значительно увеличивает массу блока питания, и повышает КМ до 0,85, что не так уж и много.

400 Вт блок питания с пассивной коррекцией коэффициента мощности.

На рисунке представлен блок питания компании FSP мощностью 400 Вт с пассивной коррекцией коэффициента мощности. Он содержит следующие элементы:

    Конденсаторы фильтра выпрямленного сетевого напряжения.

    Дроссель, осуществляющий коррекцию коэффициента мощности.

    Трансформатор главного преобразователя.

    Трансформатор, управляющий ключами.

    Трансформатор вспомогательного преобразователя (дежурного напряжения).

    Фильтры сетевого напряжения от пульсаций блока питания.

    Радиатор, на котором установлены выходные транзисторные ключи.

    Радиатор, на котором установлены диоды, выпрямляющие переменное напряжение главного трансформатора.

    Плата управления скоростью вращения вентилятора.

    Плата, на которой установлен ШИМ-контроллер FSP3528 (аналог KA3511).

    Дроссель групповой стабилизации и элементы фильтра пульсаций выходного напряжения.

  1. Конденсаторы фильтра пульсаций выходного напряжения.

Включение дросселя для коррекции КМ.

Вследствие не высокой эффективности пассивной ККМ в блок питания была введена новая схема ККМ, которая построена на основе ШИМ-стабилизатора, нагруженного на дроссель. Эта схема приносит множество плюсов блоку питанию:

  • расширенный диапазон рабочих напряжений;
  • появилась возможность значительно уменьшить емкость конденсатора фильтра сетевого напряжения;
  • значительно повышенный КМ;
  • уменьшение массы блока питания;
  • увеличение КПД блока питания.

Есть и недостатки у этой схемы - это снижение надежности БП и некорректная работа с некоторыми источниками бесперебойного питания при переключениях режимов работы батарея / сеть. Некорректная работа этой схемы с ИБП вызвана тем, что в схеме существенно снизилась емкость фильтра сетевого напряжения. В момент, когда кратковременно пропадает напряжение, сильно возрастает ток ККМ, необходимый для поддержания напряжения на выходе ККМ, в результате чего срабатывает защита от КЗ (короткого замыкания) в ИБП.

Схема активного корректора коэффициента мощности.

Если посмотреть на схему, то она представляет собой генератор импульсов, который нагружен на дроссель. Сетевое напряжение выпрямляется диодным мостом и подается на ключ, который нагружен дросселем L1 и трансформатором Т1. Трансформатор введен для обратной связи контроллера с ключом. Напряжение с дросселя снимается с помощью диодов D1 и D2. Причем напряжение снимается поочередно с помощью диодов, то с диодного моста, то с дросселя, и заряжает конденсаторы Cs1 и Cs2. Ключ Q1 открывается и в дросселе L1 накапливается энергия нужной величины. Размер накопленной энергии регулируется длительностью открытого состояния ключа. Чем больше накоплено энергии, тем большее напряжение отдаст дроссель. После выключения ключа происходит отдача накопленной энергии дросселем L1 через диод D1 конденсаторам.

Такая работа позволяет использовать полностью всю синусоиду переменного напряжения сети в отличие от схем без ККМ, а также стабилизировать напряжение, питающее преобразователь.

В современных схемах блоков питаниях, часто применяют двухканальные ШИМ-контроллеры. Одна микросхема осуществляет работу, как преобразователя, так и ККМ. В результате существенно снижается количество элементов в схеме блока питания.

Схема простого блока питания на двухканальном ШИМ-контролере.

Рассмотрим схему простого блока питания на 12В с использованием двуканального ШИМ-контроллера ML4819. Одна часть блока питания осуществляет формирование постоянного стабилизированного напряжения +380В. Другая часть представляет собой преобразователь, формирующий постоянное стабилизированное напряжение +12В. ККМ состоит, как и в выше рассмотренном случае, из ключа Q1, нагруженного на него дросселя L1 трансформатора Т1 обратной связи. Диоды D5, D6 заряжают конденсаторы С2, С3, С4. Преобразователь состоит из двух ключей Q2 и Q3, нагруженных на трансформатор Т3. Импульсное напряжение выпрямляется диодной сборкой D13 и фильтруется дросселем L2 и конденсаторами С16, С18. С помощью патрона U2 формируется напряжение регулирования выходного напряжения.

Блок питания GlacialPower GP-AL650AA.

Рассмотрим конструкцию блока питания, в которой есть активный ККМ:

  1. Плата управления токовой защитой;
  2. Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
  3. Дроссель фильтра напряжения +3,3В;
  4. Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
  5. Трансформатор главного преобразователя;
  6. Трансформатор, управляющий ключами главного преобразователя;
  7. Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
  8. Плата контроллера коррекции коэффициента мощности;
  9. Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
  10. Фильтры сетевого напряжения от помех;
  11. Дроссель корректора коэффициента мощности;
  12. Конденсатор фильтра сетевого напряжения.

Конструктивные особенности и типы разъемов

Рассмотрим виды разъемов, которые могут присутствовать на блоке питания. На задней стенке блока питания размещается разъем для подключения сетевого кабеля и выключатель. Раньше рядом с разъемом сетевого шнура размещался также разъем для подключения сетевого кабеля монитора. Опционально могут присутствовать и другие элементы:

  • индикаторы сетевого напряжения, или состояния работы блока питания;
  • кнопки управления режимом работы вентилятора;
  • кнопка переключения входного сетевого напряжения 110 / 220В;
  • USB-порты встроенные в блок питания USB hub;
  • другое.

На задней стенке все реже размещают вентиляторы, вытягивающие из блока питания воздух. Все чаше вентилятор размещают в верхней части блока питания из-за большего пространства для установки вентилятора, что позволяет установить большой и тихий активный элемент охлаждения. На некоторых блоках питаниях устанавливают даже два вентилятора и сверху и сзади.

Блок питания Chieftec CFT-1000G-DF.

С передней стенки выходит провод с разъемом подключения питания материнской платы. В некоторых блоках питаниях, модульных, он, как и другие провода, подключается через разъем. Ниже на рисунке указана распиновка контактов всех основных разъемов.

Можно заметить, что каждое напряжение имеет свой цвет провода:

  • Желтый цвет - +12 В,
  • Красный цвет - +5 В,
  • Оранжевый цвет - +3,3В,
  • Черный цвет - общий или земля.

Для остальных напряжений цвета проводов у каждого производителя могут варьироваться.

На рисунке не отображены разъемы дополнительного питания видеокарт, так как они подобны разъема дополнительного питания процессора. Также существуют другие виды разъемов, которые встречаются в компьютерах фирменной сборки компаний DelL, Apple и других.

Электрические параметры и характеристики блоков питания

Блок питания имеет множество электрических параметров, большинство из которых не отмечаются в паспорте. На боковой наклейке блока питания отмечается обычно только несколько основных параметров - рабочие напряжения и мощность.

Мощность блока питания

Мощность часто обозначают на этикетке большим шрифтом. Мощность блока питания, характеризует, сколько он может отдать электрической энергии подключаемым к нему приборам (материнская плата, видеокарта, жесткий диск и др.).

По идее, достаточно просуммировать потребление используемых компонентов и выбрать блок питание немного большей мощности для запаса. Для подсчета мощности можно воспользоваться, например сайтом http://extreme.outervision.com/PSUEngine , также вполне годятся рекомендации указанные в паспорте видеокарты, если таковой есть, тепловой пакет процессора и т.д.

Но на самом деле все намного сложнее, т.к. блок питания выдает различные напряжения - 12В, 5В, -12В, 3,3В и др. Каждая линия напряжения рассчитана на свою мощность. Логично было подумать, что эта мощность фиксированная, а сума их равна мощности блока питания. Но в блоке питания стоит один трансформатор для генерации всех этих напряжений, используемых компьютером (кроме дежурного напряжения +5В). Правда, редко, но все же можно найти блок питания с двумя раздельными трансформаторами, но такие источники питания дорогие и чаще всего используются в серверах. Обычные же БП ATX имеют один трансформатор. Из-за этого мощность каждой линии напряжений может плавать: увеличивается, если другие линии слабо нагружены, и уменьшаться, если остальные линии сильно нагружены. Поэтому часто на блоках питаниях пишут максимальную мощность каждой линии, и в результате, если их просуммировать, выйдет мощность даже больше, чем действительная мощность блока питания. Таким образом, производитель может запутать потребителя, например, заявляя слишком большую номинальную мощность, которую БП обеспечить не способен.

Отметим, что если в компьютере установлен блок питания недостаточной мощности, то это вызовет некоренную работу устройств («зависания», перезагрузки, щелкание головок жесткого диска), вплоть до невозможности включения компьютера. А если в ПК установлена материнская плата, которая не рассчитана на мощность компонентов, которые на ней установлены, то зачастую материнская плата функционирует нормально, но со временем разъемы подключения питания выгорают вследствие постоянного их нагрева и окисления.

Обгоревшие разъемы.

Допустимый максимальный ток линии

Хоть это и один из важных параметров блока питания, зачастую пользователь при покупке не обращает на него внимания. А ведь при превышении допустимого тока на лини блок питания выключается, т.к. срабатывает защита. Для ее отключения необходимо выключить блок питания от сети и подождать некоторое время, около минуты. Стоит учесть, что сейчас все самые прожорливые компоненты (процессор, видеокарта) питаются от линии +12В, поэтому в большей степени надо уделять внимание значениям указанных для нее токов. У качественных БП эта информация, обычно, вынесена в виде таблички (например, Seasonic M12D-850) или списка (например, FSP ATX-400PNF) на боковую наклейку.

Источники питания, у которых такая информация не указана (например, Gembird PSU7 550W), сразу же заставляют усомниться в качестве исполнения и соответствии заявленной мощности реальной.

Остальные параметры блоков питания не регламентируются, но не менее важны. Определить эти параметры возможно только проведя различные тесты с блоком питания.

Диапазон рабочих напряжений

Под диапазоном рабочих напряжений подразумевают интервал значений сетевого напряжения, при котором блок питания сохраняет работоспособность и значения своих паспортных параметров. Сейчас все чаще производятся блоки питания с АККМ (активный корректор коэффициента мощности), который позволяет расширить диапазон рабочих напряжений от 110 до 230. Также имеются блоки питания с малым рабочим диапазоном напряжений, например блок питания компании FPS FPS400-60THN-P имеет диапазон от 220 до 240. В результате этот блок питания, включенный даже в паре с массовым источником бесперебойного питания, будет выключаться при падениях напряжения в сети. Это вызвано тем, что обычный ИБП стабилизирует выходное напряжение в диапазоне 220 В +/- 5%. То есть минимальное напряжение для перехода на батарею составит 209 (а если учесть медленность переключения реле, то напряжение может оказаться еще меньше), что ниже рабочего напряжения блока питания.

Внутреннее сопротивление

Внутреннее сопротивление характеризует внутренние потери блока питания при протекании тока. Внутреннее сопротивление по типу можно разделить на два вида: обычное по постоянному току и дифференциальное по переменному току.

Эквивалентная схема замещения блока питания.

Сопротивление по постоянному току складывается из сопротивлений компонентов, из которых построен блок питания: сопротивление проводов, сопротивление обмоток трансформатора, сопротивление проводов дросселя, сопротивление дорожек печатной платы и др. Из-за наличия этого сопротивления с ростом загруженности блока питания напряжение падает. Это сопротивление можно увидеть, построив кросс-нагрузочную характеристику БП. Для уменьшения этого сопротивления в блоках питания работают различные схемы стабилизации.

Кросс-нагрузочная характеристика блока питания.

Дифференциальное сопротивление характеризует внутренние потери блока питания при протекании переменного тока. Это сопротивление еще называется электрическим импедансом. Уменьшить это сопротивление наиболее сложно. Для его уменьшения в блоке питания используется ФНЧ. Для уменьшения импеданса не достаточно установить в блок питания конденсаторы большой емкости и катушки с большой индуктивностью. Необходимо еще чтобы конденсаторы имели низкое последовательное сопротивление (ESR), а дроссели были изготовлены из толстого провода. Реализовать это физически очень сложно.

Пульсации выходных напряжений

Блок питания представляет собой преобразователь, который не один раз преобразовывает напряжение с переменного в постоянное. Вследствие этого на выходе его линий присутствуют пульсации. Пульсации представляют собой резкое изменение напряжения в течение короткого интервала времени. Главная проблема пульсаций в том, что если в схеме или устройстве не стоит фильтр в цепи питания или он плохой, то эти пульсации проходят по всей схеме, искажая ее рабочие характеристики. Это можно увидеть, например, если выкрутить громкость колонок на максимум во время отсутствия сигналов на выходе звуковой карты. Будут слышны различные шумы. Это и есть пульсации, но не обязательно это шумы блока питания. Но если в работе обычного усилителя от пульсаций большого вреда нет, увеличиться только уровень шумов, то, например, в цифровых схемах и компараторах они могут привести к ложному переключению или неправильному восприятию входной информации, что приводит к ошибкам или неработоспособности устройства.

Форма выходных напряжений блока питания Antec Signature SG-850.

Стабильность напряжений

Далее рассмотрим такую характеристику как, стабильность напряжений, выдаваемых блоком питания. В процессе работы, какой идеальный не был бы блок питания, его напряжения изменяются. Увеличение напряжения вызывает в первую очередь увеличение токов покоя всех схем, а также изменение параметров схем. Так, например, для усилителя мощности увеличение напряжения увеличивает его выходную мощность. Увеличенную мощность могут не выдержать некоторые электронные детали и сгореть. Это же увеличение мощности приводит к росту рассеиваемой мощности электронными элементами, а, следовательно, к росту температуры этих элементов. Что приводит к перегреву и/или изменению характеристик.

Снижение напряжения наоборот уменьшает ток покоя, и также ухудшает характеристики схем, например амплитуду выходного сигнала. При снижении ниже определенного уровня определенные схемы перестают работать. Особенно к этому чувствительна электроника жестких дисков.

Допустимые отклонения напряжения на линиях блока питания описаны в стандарте ATX и в среднем не должны превышать ±5% от номинала линии.

Для комплексного отображения величины просадки напряжений используют кросс-нагрузочную характеристику. Она представляет собой цветовое отображение уровня отклонения напряжения выбранной линии при нагрузке двух линий: выбранной и +12В.

Коэффициент полезного действия

Перейдем теперь к коэффициенту полезного действия или сокращенно КПД. Со школы многие помнят - это отношение полезной работы к затраченной. КПД показывает сколько из потребленной энергии превратилось в полезную энергию. Чем выше КПД, тем меньше надо платить за электроэнергию потребляемую компьютером. Большинство качественных блоков питания имеют схожий КПД, он варьирует в диапазоне не больше 10%, но КПД блоков питания с ПККМ (PPFC) и АККМ (APFC) существенно выше.

Коэффициент мощности

Как параметр, на который следует обращать внимание при выборе БП, коэффициент мощности менее значим, но от него зависят другие величины. При малом значении коэффициента мощности будет и малое значение КПД. Как было отмечено выше, корректоры коэффициента мощности приносят множество улучшений. Больший коэффициент мощности приведет к снижению токов в сети.

Неэлектрические параметры и характеристики блоков питания

Обычно, как и для электрических характеристик, неэлектрические параметры в паспорте указывается далеко не все. Хотя неэлектрические параметры блока питания также важны. Перечислим основные из их:

  • диапазон рабочих температур;
  • надежность блока питания (время наработки на отказ);
  • уровень шума создаваемый блоком питания при работе;
  • частота вращения вентилятора блока питания;
  • вес блока питания;
  • длина питающих кабелей;
  • удобность в использовании;
  • экологичность блока питания;
  • соответствие государственным и международным стандартам;
  • габариты блока питания.

Большинство неэлектрических параметров понятны всем пользователям. Однако остановимся на более актуальных параметрах. Большинство современных блоков питания работают тихо, они имеют уровень шума около 16 дБ. Хотя даже в блок питания с паспортным уровнем шума 16 дБ может быть установлен вентилятор с частотой вращения 2000 об/мин. В этом случае, при нагрузке блока питания около 80%, схема управления скоростью вращения вентилятора включит его на максимальные обороты, что приведет к появлению значительного шума, порою более 30 дБ.

Также необходимо уделять внимание удобству и эргономике блока питания. Использование модульного подключения кабелей питания имеет массу достоинств. Это и более удобное подключение устройств, меньше занятого пространства в корпусе компьютера, что в свою очередь не только удобно, но улучшает охлаждение компонентов компьютера.

Стандарты и сертификаты

При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам. На блоках питания чаще всего можно встретить указание следующих стандартов:

    RoHS, WEEE - не содержит вредных веществ;

    UL, cUL - сертификат на соответствие своим техническим характеристикам, а также требованиям безопасности для встроенных электроприборов;

    CE - сертификат который показывает, что блок питания соответствует строжайшим требованиям директив европейского комитета;

    ISO - международный сертификат качества;

    CB - международный сертификат соответствия своим техническим характеристикам;

    FCC - соответствие нормам электромагнитных наводок (EMI) и радионаводок (RFI), генерируемых блоком питания;

    TUV - сертификат соответствия требованиям международного стандарта ЕН ИСО 9001:2000;

    ССС - сертификат Китая соответствия безопасности, электромагнитным параметрам и защите окружающей среды.

Также есть компьютерные стандарты форм-фактора АТХ, в котором определены размеры, конструкция и многие другое параметры блока питания, включая допустимые отклонения напряжений при нагрузке. Сегодня существуют несколько версий стандарта АТХ:

  • ATX 1.3 Standard;
  • ATX 2.0 Standard;
  • ATX 2.2 Standard;
  • ATX 2.3 Standard.

Отличие версий стандартов АТХ в основном касается введения новых разъемов и новых требованиям к линиям питания блока питания.

Когда возникает необходимость покупки нового блока питания ATX, то вначале необходимо определится с мощностью, которая необходима для питания компьютера, в который этот БП будет установлен. Для ее определения достаточно просуммировать мощности компонентов, используемых в системе, например воспользовавшись калькулятором от outervision.com . Если нет такой возможности, то можно исходить из правила, что для среднестатистического компьютера с одной игровой видеокартой вполне хватает блока питания мощностью 500-600 ватт.

Учитывая, что большинство параметров блоков питания можно узнать только протестировав его, следующим этапом настоятельно рекомендуем ознакомиться с тестами и обзорами возможных претендентов - моделей блоков питания, которые доступны в вашем регионе и удовлетворяют ваши запросы как минимум по обеспечиваемой мощности. Если же таковой возможности нет, то выбирать необходимо по соответствию блока питания современным стандартам (чем большему числу, тем лучше), при этом желательно наличие в блоке питания схемы АККМ (APFC). Приобретая блок питания, также важно включить его, по возможности прямо на месте покупки или сразу по приходу домой, и проследить, как он работает, чтоб источник питания не издавал писков, гудений или другого постороннего шума.

В общем, необходимо выбрать блок питания, который был бы мощным, качественно сделанным, с хорошими заявленными и реальными электрическими параметрами, а также окажется удобным в эксплуатации и тихим во время работы, даже при высокой нагрузке на него. И ни в коем случае при покупке источника питания не стоит экономить пару долларов. Помните, что от работы этого устройства главным образом зависит стабильность, надежность и долговечность работы всего компьютера.

Статья прочитана 160228 раз(а)

Подписаться на наши каналы

Одним из важных составных элементов современного персонального компьютера является блок питания (БП). При отсутствии питания компьютер не будет работать.

С другой стороны, если блок питания будет вырабатывать напряжение, выходящее за пределы допустимого, то это может вызвать выход из строя важных и дорогих комплектующих.

В таком блоке с помощью инвертора происходит преобразование выпрямленного сетевого напряжения в переменное высокой частоты, из которого формируются необходимые для работы компьютера низкие потоки напряжения.

Схема АТХ блока питания состоит из 2 узлов – выпрямителя сетевого напряжения и для компьютера.

Сетевой выпрямитель представляет собой мостовую схему с емкостным фильтром. На выходе устройства формируется постоянное напряжение величиной от 260 до 340 В.

Основными элементами в составе преобразователя напряжения являются:

  • инвертор, преобразующий постоянное напряжение в переменное;
  • высокочастотный , работающий на частоте 60 кГц;
  • низковольтные выпрямители с фильтрами;
  • устройство управления.

Кроме того, в состав преобразователя входят источник питания дежурного напряжения, усилители сигнала управления ключевыми , схемы защиты и стабилизации, а также другие элементы.

Инвертор включает два силовых транзистора, работающих в ключевом режиме и управляемых с помощью сигналов с частотой 60 кГц, поступающих со схемы управления, реализованной на микросхеме TL494.

В качестве нагрузки инвертора используется импульсный трансформатор, с которого снимаются, выпрямляются и фильтруются напряжения +3,3 В, +5 В, +12 В, -5 В, -12 В.

Основные причины неисправностей

Причинами неисправностей в блоке питания могут быть:

  • броски и колебания напряжения питающей сети;
  • некачественное изготовление изделия;
  • перегрев, связанный с плохой работой вентилятора.

Неисправности обычно приводят к тому, что системный блок компьютера перестает запускаться или после непродолжительной работы выключается. В других случаях, несмотря на работу других блоков, не запускается материнская плата.

Прежде, чем начинать ремонт, надо окончательно убедиться в том, что неисправен именно блок питания. При этом сначала надо проверить работоспособность сетевого кабеля и сетевого выключателя . Убедившись в их исправности можно отсоединять кабели и извлекать из корпуса системного блока.

Перед тем, как повторно автономно включить БП, к нему необходимо подключить нагрузку. Для этого понадобятся резисторы, которые подключаются к соответствующим выводам.

При этом величину сопротивлений резисторов нагрузки надо выбрать так, чтобы по цепям протекали токи, величины которых соответствовали номинальным показателям.

Мощность рассеивания должна соответствовать номинальным напряжениям и токам.

Вначале необходимо проверить влияние материнской платы . Для этого необходимо замкнуть два контакта на разъеме блока питания. На 20-контактном разъеме это будут контакт 14 (провод, по которому подходит сигнал Power On) и контакт 15 (провод, соответствующий выводу GND – Земля). Для 24-контактного разъема — это будут контакты 16 и 17 соответственно.

Исправность БП можно оценить по вращению его вентилятора. Если вентилятор вращается – блок питания исправен.

Далее надо проверить соответствие напряжений на разъеме блока их номинальным величинам. При этом надо учитывать, что в соответствии с документацией на блок питания АТХ допускается отклонение значений напряжения для цепи питания -12В в пределах ± 10%, а для остальных цепей питания ± 5%. В случае невыполнения этих условий надо переходить к ремонту блока питания.

Ремонт компьютерного блока питания ATX

Сняв крышку с блока питания, необходимо сразу с помощью пылесоса вычистить из него всю пыль. Именно из-за пыли часто выходят из строя радиодетали, поскольку пыль, покрывая деталь толстым слоем, вызывает перегрев таких деталей.

Следующим этапом определения неисправностей является тщательный осмотр всех элементов. Особое внимание необходимо обратить на электролитические конденсаторы. Причиной их пробоя может быть тяжелый температурный режим. Неисправные конденсаторы обычно вздуваются, и из них вытекает электролит.

Такие детали надо заменить новыми с такими же номиналами и рабочими напряжениями. Иногда внешность конденсатора не указывает на его неисправность. Если же по косвенным признакам есть подозрение на плохую работу, то можно . Но для этого его нужно выпаять из схемы.

Ухудшение теплового режима внутри блока может быть связано с плохой работой кулера. Для улучшения работы его надо очистить от пыли и смазать подшипники машинным маслом.

Неисправность блока питания может быть также связана с неисправностью низковольтных диодов. Для проверки надо измерить сопротивления прямого и обратного переходов элементов с помощью мультиметра. Для замены неисправных диодов надо использовать такие же диоды Шоттки.

Следующая неисправность, которую можно определить визуально, является образование кольцевых трещин, которые нарушают контакты. Чтобы обнаружить такие дефекты, надо очень тщательно просмотреть печатную плату. Для устранения таких дефектов необходимо использовать тщательную пайку мест образования трещин (для этого необходимо знать, ).

Таким же образом осматриваются резисторы, предохранитель, катушки индуктивности, трансформаторы.

В том случае, если перегорел предохранитель, его можно заменить на другой или починить. В блоке питания используется специальный элемент, имеющий выводы для пайки. Для ремонта неисправного предохранителя его выпаивают из схемы. Затем прогревают металлические чашки и снимают их со стеклянной трубки. Затем выбирают проволочку нужного диаметра.

Необходимый для данного тока диаметр проволоки можно найти по таблицам. Для применяемого в схеме блока питания АТХ предохранителя на 5А диаметр проволоки из меди составит 0,175 мм. Затем проволока вставляется в отверстия чашек предохранителя и фиксируется пайкой. Отремонтированный предохранитель можно впаять в схему.

Выше рассмотрены наиболее простые неисправности компьютерного блока питания.

Для обнаружения и ремонта более сложных поломок требуются хорошая техническая подготовка и более сложные измерительные приборы, например, осциллограф.

Кроме того, элементы, которые необходимо заменять часто являются дефицитом и стоят довольно дорого. Поэтому при сложной неисправности всегда надо сравнивать затраты на ремонт и затраты на приобретение нового блока питания. Часто случается так, что выгодней приобрести новый.

Выводы :

  1. Одним из важнейших элементов ПК является блок питания, при выходе из строя которого компьютер перестает работать.
  2. Блок питания компьютера представляет собой довольно сложное устройство, но в некоторых случаях его можно отремонтировать своими руками.

Выполнять ремонт компьютерного «железа» самостоятельно – дело достаточно сложное. При этом, пользователь должен точно знать, какой именно из всех компонентов нуждается в ремонте. Ремонтировать блок питания компьютера имеет смысл, если он (как минимум) снят с гарантии, а также – стоимость замены делает такой ремонт действительно целесообразным. Качественный ремонт в СЦ может по цене доходить до стоимости «бюджетных» БП. Обычно, кое-что пользователь может сделать и сам… При условии, что имеет навыки работы с электрооборудованием (220 Вольт), и хорошо понимает опасность ошибки в подобной работе.

Рекомендации по самостоятельному ремонту компьютерных блоков питания:

  1. Подключение к сети 220 В любого блока питания необходимо осуществлять через «быстрый» предохранитель на ток не более 2А.
  2. Первый запуск после ремонтных работ производится последовательно с лампой накаливания. О коротком замыкании на входе устройства скажет накал лампы. Такой БП, включать в сеть – нельзя.
  3. В процессе как диагностики, так и ремонта, необходимо проводить разряд всех электролитических емкостей (после каждого включения/отключения). Нужно ждать 3-5 минут, либо использовать электролампу на 220В – вспышка укажет, что разряд действительно произведен.
  4. Все ремонтные операции проводятся при полностью отключенном от сети блоке питания.

Желательно, чтобы рядом с рабочим местом не было заземленных предметов (таких как: отопительные радиаторы, трубы и т.д.)

Собственно, в высоковольтную часть схемы БП – мы не «полезем». Самостоятельный ремонт сводится к: поиску «кольцевых» трещин; замене силовых диодов (если необходимо); замене «плохих» конденсаторов (если необходимо).

В любом случае, ремонт блока питания компьютераначинается с его демонтажа из ПК. Конечно, это стоит сделать, если вы на 100% уверены, что ремонтировать нужно именно БП.

Разбор корпуса самого БП осуществляется откручиванием саморезов (винтов), крепящих две половинки друг к другу. Используется крестовая отвертка.

Примечание: выполняя самостоятельный разбор БП, вы повреждаете пломбу изготовителя – что влечет лишение дальнейшей гарантии на это устройство.

Непосредственно о том, как производится ремонт блока питания и об основных неисправностях – рассказано далее. Чаще всего, отказы, которые встречаются, могут быть обнаружены и устранены достаточно просто:

  • Проверьте, присутствует ли «дежурное» напряжение (+5В SB). Это – фиолетовый провод 24-контактного (основного) разъема блока питания. Между «черным» и «фиолетовым» – должно быть напряжение +5 Вольт. Проверить его наличие можно и до разбора корпуса блока, при этом, сам БП должен быть включен в сеть.

  • Разобрали блок питания – смотрим на плату. Часто встречаются неисправные (вспухшие) электролитические конденсаторы. Это можно определить визуально, чаще всего подвержены дефекту именно электролитические конденсаторы не очень большой емкости (470-220 мкФ, и меньше). Такой конденсатор необходимо отпаять с платы (для этого, ее придется снять), а новый, должен быть той же емкости и рассчитан на то же (или – большее) напряжение. Внимание: соблюдайте полярность выводов! На импортных, «полосой» обозначен «минус».

  • Следующая неисправность – это выход из строя низковольтных диодов (12 или 5В). Они могут быть конструктивно выполнены как сборки из двух диодов (плоский корпус с тремя выводами), бывает и раздельная установка.


  • С проверкой/заменой диодов – немного сложнее, чем с конденсаторами. Для проверки, нужно выпаивать один вывод каждого диода (можно – и всю деталь). Как «звонится» исправный диод – все знают. При прямом подключении, тестер покажет значение (близкое к «0»), при обратном – ничего не показывает (сам тестер – включен в режиме «диод»):

  • На замену, рекомендуется устанавливать диоды Шоттки, имеющие аналогичный (или – больший) заявленный ток/напряжение.
  • Осуществляя ремонт блока питания самостоятельно, отверните винты самой платы и снимите ее (убедитесь еще раз, блок – должен быть обесточен). Внимательно смотря на монтаж, довольно быстро можно будет заметить дефекты «кольцевых трещин»:

Их нужно «пропаять», затем – все собрать и включить (возможно – все заработает).

Отдельно нужно сказать про «дежурное» питание. Как правило, ремонт блока питания путем просто замены сгоревших транзисторов, результата не даст – транзисторы снова сгорают, причем – те же. Виновником поломки может являться и трансформатор. Это – деталь дефицитная, которую трудно купить и найти. В редких случаях, причиной отсутствия 5В «дежурного» напряжения может быть изменение рабочей частоты, за которую отвечают «частотозадающие» детали: резистор и конденсатор (не электролитический).

Примечание: чтобы произвести отпайку детали, установленной на теплоотводе, предварительно демонтируют (откручивают) ее крепление. Установка – производится в обратном порядке (сначала – крепление, затем – пайка). Старайтесь не нарушать изоляцию детали от теплоотвода (как правило, используется слюда).

Запуск блока питания: проверьте наличие +5V SB. Если оно есть – попробуем запустить блок питания (соединяют «салатовый» провод, PS-ON, с «черным», общим).

На этом, возможности пользователя по самостоятельному ремонту – можно сказать, исчерпываются.

Внимание! Не занимайтесь самостоятельным ремонтом блока питания, если вы не имеете опыта в электротехнике! После каждого отключения, необходимо разряжать высоковольтные конденсаторы (ждать 3-5 минут)!

Подробнее: «вспухшие» конденсаторы и их замена

Надеемся, по фотографии – понятно, какие конденсаторы «вспухли», какие – нет.

Если на плате есть несколько одинаковых (или – набор параллельно соединенных), из которых «вспух» хотя бы один – менять лучше все. Фирмы, производящие надежную продукцию: Nichicon, Rubycon. Но такие вы – вряд ли найдете. Из бюджетных, можно посоветовать Teapo, Samsung.

При установке, необходимо соблюдать полярность (рабочее напряжение – должно быть таким же или больше, чем обозначено на заменяемом).

На фото – конденсатор на 16 Вольт, 470 МикроФарад (Rubycon, самая дорогая серия).

Технология пайки

Производя монтаж и демонтаж деталей на плате компьютерного БП, рекомендуется использовать паяльник мощностью 40 Ватт. В отдельных случаях, для громоздких деталей («мощных» выводов), можно пользоваться паяльником и на 60 Ватт (но – не более).

Самый простой припой (типа ПОС-60) – в данном случае, подходит. Лучше взять в виде тонкой проволоки.

Флюс – не используется (достаточно иметь в наличии обычную канифоль).

Демонтаж детали:

  • Греть паяльником, до полного расплавления припоя;
  • Используя устройство для отпайки (из пластика), быстро произвести откачку жидкого припоя:

  • Повторить пункты 1 и 2.

Правильно отпаянная деталь, легко самостоятельно выходит из платы (не нужно «поддавливать» вывод паяльником).

Если демонтируется конденсатор – предварительно можно «откусывать» выступающий вывод бокорезами.

Если отпаивается силовой элемент – необходимо полностью выкрутить винт крепления.

Замена предохранителя

В схеме любого БП, предохранитель идет сразу после розетки питания (последовательно с одной из фаз 220 В). Сами предохранители, как детали, различаются по силе тока (то есть, сколько ампер он выдержит в максимуме). Также, предохранители делятся на «F»-тип («быстрые»), «T»-тип («тепловые»).

Если предохранитель необходимо заменить – вы должны выяснить, на какой номинал (силу тока) он был рассчитан. Также, желательно знать «тип».

Замена на предохранитель с большим номиналом – не допускается. Замена F на T – тоже.

Примечание: если вы знаете, какой нужен «ток», но не знаете «тип», можете устанавливать новый предохранитель типа «F».

Именно так. А чтобы не было вопросов, почему он чаще сгорает – проще будет все же узнать достоверные данные (как номинал, так и тип).

Если предохранитель – в стеклянном цилиндрическом корпусе, то в любом случае он рассчитан на 220В электросети. Применение других типов конструкции – не допускается.

Что используется (приборы и материалы)

При выполнении ремонта блока питания компьютера, не понадобятся какие-то «нестандартные» устройства или оборудование:

Но то, что на рис. – подразумевает, что вы как минимум умеете обращаться с: паяльником, тестером (щипцами, бокорезами…). Для профессионального ремонта, здесь должен был быть осциллограф (достаточно полосы пропускания 3 МГц). Вот только, цена его… (как 2-3 новых БП).

Надеемся, приведенная здесь информация – будет полезна для выполнения «начального» ремонта. Более сложные операции (ремонт трансформатора, работа с высоковольтной «обвязкой», восстановление генерации) – под силу профессионалам (имеющим опыт именно в ремонте БП).

Импульсный блок питания – не очень «простое» устройство, в некоторых случаях восстановление жизнеспособности – производится полной заменой деталей (того или иного узла). Более сложный, «самостоятельный» ремонт – не обязан в каждом случае «увенчаться успехом»…

Характеристики диодов

Сам по себе диод, как отдельный элемент, бывает одного из трех типов: просто диод (p-n переход), СВЧ-диод, и диод Шоттки (квантовый). Нас интересует только последний из них.

Задача диода – пропускать ток в одну сторону (и не пропускать – в другую). Если падение напряжения в прямом включении на обычных диодах – 1 или 2 вольта, то на диодах Шоттки – близко к нулю. Напряжения, получаемые в компьютерном БП – невысокие (12 Вольт и 5), вот почему используются только Шоттки.

Вы можете посмотреть, чему равно падение напряжения на диоде. Тестер должен быть в режиме «диод» (как говорилось выше). Если он «покажет» от 0,015 до 0,7 – то, все правильно. Такие значения – типичны для Шоттки-диода (меньше – это уже «пробой»).

Внутри схем блоков питания, используют пару диодов, включая их встречно:

Для положительного напряжения – используют «сборки» (трехвыводные, в них – 2 диода). Одиночные диоды (круглый корпус) – обычно используют для получения отрицательных напряжений. При замене, одиночные диоды (даже если «полетел» один), рекомендуется менять «парой».

Как лучше подобрать замену? Если на «прямоугольном» пластмассовом корпусе (3-х выводном) – написана марка:

То, с «круглыми» – будет сложнее. Полоска на корпусе означает лишь «направление».

Если мы знаем марку диодов – ищем такие же, или – смотрим параметры (напряжение, ток), и ищем аналог (с таким же или чуть большим значением).

Если не знаем – что ж, надо «скачать» схему вашего блока питания, и посмотреть. Между прочим, в СЦ тоже так поступают (а вот думать, гадать, какая там сила тока – не очень благодарное занятие). Не забывая, что компьютерные БП – содержат только диоды Шоттки.

Примечание: устанавливать диодные сборки/диоды с заведомо большими параметрами тока и напряжения – не рекомендуется (допустим: было 50 Вольт 12 А, а ставят 50 Вольт 20 А). Не нужно этого делать, так как: может быть другой корпус. Кроме чего, есть «дополнительные» параметры (которые в более «мощном» случае – отличаются «не в лучшую» сторону).

Типичный пример (сборки, маломощный БП): 12CTQ040 (40В, 12А); 10CTQ150 (150В, 10А).

Пример одиночных диодов: 90SQ045 (45В, 9А); SR350 (50В, 3А).

Замена вентилятора БП

Как выбрать новый вентилятор для БП? Он, то есть вентилятор, должен быть: с гидро-подшипником, трехпиновый (3 провода в кабеле), и – подходящих размеров (12см/8 см).

Еще – важно, что в БП используется низкооборотистый «вент», обычно это 1200-1400 (для 12 см) и 1600-2000 (для 8).

При старте БП, на вентилятор подается не все напряжение (не 12 Вольт), а, скажем так, 3-5 Вольт. Важно, чтобы вентилятор умел «стартовать» при таких напряжениях (иначе, он не раскрутится после включения). Уточняйте «стартовое напряжение» вентилятора, будьте внимательны.

Способ подключения вентилятора к БП:

  1. Два проводка (черный, красный) припаяны к плате блока питания.
  2. Два проводка (черный, красный) присоединяются коннектором 2-пин к коннектору платы.
  3. Три проводка (черный, красный + желтый) присоединяются коннектором 3-пин к плате.

В первых двух случаях, желтый провод – тахометр – можно вывести из корпуса БП для мониторинга самой материнской платой.

Обратите внимание на такой параметр, как высота вентилятора. Если взять больше, чем нужно, корпус БП – «не закроется».

При замене, важно, чтобы производительность нового вентилятора (в «литрах в минуту»), была бы как минимум, той же, что и у старого вентилятора. Пожалуй, этот параметр – является основным (в описании товара, он обычно – указывается).

Таким образом, можно сразу провести «мод» блока питания, установив не менее производительный, но более «тихий» пропеллер (гидро-подшипник в бюджетных БП – не часто идет «по умолчанию»).

Вот пожалуй и все, что можно сказать про вентиляторы. Выбирайте.

Эквивалент нагрузки

Блок питания, при запуске «проводком», стартовал. Не спешите устанавливать его в компьютер. Попробуем протестировать БП на эквиваленте нагрузки.

Берутся такие резисторы:

Они называются «ПЭВ» (марка медного провода, из которого сделаны). Можно взять на 25 Ватт, или на 10 (на 7,5):

Главное здесь – составить схему из них (соединяя: параллельно, последовательно), чтобы получилось «мощное» сопротивление (3 Ома и 5-6 Ом).

5-омную нагрузку, мы будем включать в «12В» линию, 3-омную – к «5В». Для подсоединения к БП, используется Molex-разъем (желтый провод – это 12 В):

Примечание: при создании «эквивалента», учитывайте мощность, которая приходится на каждый резистор (она не должна превосходить значение, на которое он рассчитан).

Зная напряжение на резисторе, мощность находится по закону: напряжение в квадрате / сопротивление.

Пример: 4 резистора по 20 Ом – «в параллель», мощность каждого – 7,5 Ватт (пойдет на тестирование линии «12-вольт»).

Можно использовать и галогенные лампочки на 12V (допустим: две по 10 Ватт, в параллель).

Итак, подключив эквивалент нагрузки к Molex-разъему, пробуем включить блок питания («салатовый»/«черный», разъем ATX). Шнур «220 Вольт», тоже должен быть «штатный».

Если включение произошло – подождите 10 секунд. Не уходит ли блок в защиту? Вентилятор должен вращаться, все напряжения – находиться в нужном диапазоне (допускается отклонение не более 5-6%).

Собственно, в таком, «щадящем» для него режиме, любой БП должен работать сколь угодно долго.

Можно сделать и более мощный «эквивалент». То есть, сопротивление в Омах – будет еще ниже. Главное – не «переборщить» (для каждого БП, максимальная сила тока – указана):

Сила тока через нагрузку равна напряжению, деленному на ее сопротивление (в Омах). Ну, это – вы и так знаете…

При тестировании, «нагрузка» будет включаться только в две линии («плюс 5», «плюс 12»). Этого, в общем, достаточно. Другие напряжения («минусы»), можно промерить вольтметром (на 24-пиновом штекере).

Примечание: если линию «+12» вы хотите «испытывать» с силой тока выше 6А – не используйте Molex-разъемы! 4-пиновый разъем питания процессора (+12 В) – держит до 10 Ампер. При необходимости, нагрузка «раскидывается» между двумя разъемами (процессорным, «молексом»).

Примечание 2: При выполнении любых соединений, используйте провод достаточного сечения (на 1 мм кв. – ток 10 А).

На эквиваленте нагрузки, будет выделяться тепло (тепловая мощность равна электрической). Позаботьтесь об охлаждении (притоке воздуха). В процессе тестирования, первые 2-3 минуты – лучше следить, не перегреется ли один из резисторов.

На фото – «серьезный» подход к созданию «эквивалента».

Ремонт блока питания

Блок питания - это важнейший компонент любого персонального компьютера, от которого зависит надежность и стабильность вашей сборки. На рынке довольно большой выбор продукции от различных производителей. У каждого из них по две-три линейки и больше, которые включают в себя еще и с десяток моделей, что серьезно запутывает покупателей. Многие не уделяют этому вопросу должного внимания, из-за чего часто переплачивают за избыточную мощность и ненужные "навороты". В этой статье мы разберемся, какой же блок питания подойдет для вашего ПК лучше всего?

Блок питания (далее по тексту БП), это прибор, преобразующий высокое напряжение 220 В из розетки в удобоваримые для компьютера значения и оснащенный необходимым набором разъемов для подключения комплектующих. Вроде бы ничего сложного, но открыв каталог , покупатель сталкивается с огромным числом различных моделей с кучей зачастую непонятных характеристик. Прежде, чем говорить о выборе конкретных моделей, разберем, какие характеристики являются ключевыми и на что стоит обращать внимание в первую очередь.

Основные параметры.

1. Форм-фактор . Для того, чтобы блок питания банально поместился в ваш корпус, вы должны определиться с форм-факторов, исходя из параметров самого корпуса системного блока . От форм-фактор зависят габариты БП по ширине, высоте и глубине. Большинство идут в форм-факторе ATX, для стандартных корпусов . В небольших системных блоков стандарта microATX, FlexATX, десктопов и других, устанавливаются блоки меньших размеров, такие как SFX , Flex-ATX и TFX .

Необходимый форм-фактор прописан в характеристиках корпуса, и именно по нему нужно ориентироваться при выборе БП.

2. Мощность. От мощности зависит, какие комплектующие вы сможете установить в ваш компьютер, и в каком количестве.
Важно знать! Цифра на блоке питания, это суммарная мощность по всем его линиям напряжений. Так как в компьютере основными потребителями электроэнергии являются центральный процессор и видеокарта, то основная питающая линия, это 12 В, когда есть еще 3,3 В и 5 В для питания некоторых узлов материнской платы, комплектующих в слотах расширения, питание накопителей и USB портов. Энергопотребление любого компьютера по линиям 3,3 и 5 В незначительно, по этому при выборе блока питания по мощности нужно всегда смотреть на характеристику "мощность по линии 12 В ", которая в идеале должна быть максимально приближена к суммарной мощности.

3. Разъемы для подключения комплектующих , от количества и набора которых зависит, сможете ли вы, к примеру, запитать многопроцессорную конфигурацию, подключить парочку или больше видеокарт, установить с десяток жестких дисков и так далее.
Основные разъемы, кроме ATX 24 pin , это:

Для питания процессора - это 4 pin или 8 pin коннекторы (последний может быть разборным и иметь запись 4+4 pin).

Для питания видеокарты - 6 pin или 8 pin коннекторы (8 pin чаще всего разборный и обозначается 6+2 pin).

Для подключения накопителей 15-pin SATA

Дополнительные:

4pin типа MOLEX для подключения устаревших HDD с IDE интерфейсом, аналогичных дисковых приводов и различных опциональных комплектующих, таких как реобасы, вентиляторы и прочее.

4-pin Floppy - для подключения дискетных приводов. Большая редкость в наши дни, поэтому такие разъемы чаще всего идут в виде переходников с MOLEX.

Дополнительные параметры

Дополнительные характеристики не так критичны, как основные, в вопросе: "Заработает ли этот БП с моим ПК?", но они так же являются ключевыми при выборе, т.к. влияют на эффективность блока, его уровень шума и удобство в подключении.

1. Сертификат 80 PLUS определяет эффективность работы БП, его КПД (коэффициент полезного действия). Список сертификатов 80 PLUS:

Их можно разделить на базовый 80 PLUS, крайний слева (белый), и цветные 80 PLUS, начиная от Bronze и заканчивая топовым Titanium.
Что такое КПД? Допустим, мы имеем дело с блоком, КПД которого 80% при максимальной нагрузке. Это означает, что на максимальной мощности БП будет потреблять из розетки на 20% больше энергии, и вся эта энергия будет преобразована в тепло.
Запомните одно простое правило: чем выше в иерархии сертификат 80 PLUS, тем выше КПД, а значит он будет меньше потреблять лишней электроэнергии, меньше греться, и, зачастую, меньше шуметь.
Для того, чтобы достичь наилучших показатель в КПД и получить "цветной" сертификат 80 PLUS, особенно высшего уровня, производители применяют весь свой арсенал технологий, наиболее эффективную схемотехнику и полупроводниковые компоненты с максимально низкими потерями. Поэтому значок 80 PLUS на корпусе говорит еще и о высокой надежности, долговечности блока питания, а так же серьезном подходе к созданию продукта в целом.

2. Тип системы охлаждения. Низкий уровень тепловыделения блоков питания с высоким КПД, позволяет применять бесшумные системы охлаждения. Это пассивные (где нет вентилятора вообще) , либо полупассивные системы , в которых вентилятор не вращается на небольших мощностях, и начинает работать, когда БП становится "жарко" в нагрузке.

При подборе БП стоит обратить внимание и на длину кабелей, основного ATX24 pin и кабеля питания CPU при установки в корпус с нижним расположением блока питания.

Для оптимальной прокладки питающих проводов за задней стенкой, они должны быть длиной как минимум от 60-65 см , в зависимости от размеров корпуса. Обязательно учтите этот момент, чтобы потом не возиться с удлинителями.
На количество MOLEX нужно обращаться внимание только если вы ищете замену для своего старого и допотопного системного блока с IDE накопителями и приводами, да еще и в солидном количестве, ведь даже у самых простых БП есть минимум пара-тройка стареньких MOLEX, а в более дорогих моделях их вообще десятки.

Надеюсь этот небольшой путеводитель по каталогу компании DNS поможет вам в столь сложном вопросе на начальном этапе вашего знакомства с блоками питания. Удачных покупок!