Полевые с p каналом. Мдп-транзисторы с индуцированным каналом

Полупроводниковых элементов постоянно растет. Каждое новое изобретение в этой области, по сути дела, меняет все представление об электронных системах. Меняются схемотехнические возможности в проектировании, появляются новые устройства на их основе. С момента изобретения (1948 г), прошло уже немало времени. Были изобретены структуры "p-n-p" и "n-p-n", Со временем появился и МДП-транзистор, работающий по принципу изменения электрической проводимости приповерхностного полупроводникового слоя под действием электрического поля. Отсюда и еще одно название этого элемента - полевой.

Сама аббревиатура МДП (металл-диэлектрик-полупроводник) характеризует внутреннее строение этого прибора. И действительно, затвор у него изолирован от стока и истока тонким непроводящим слоем. Современный МДП-транзистор имеет длину затвора, равную 0,6 мкм. Через него может проходить только электромагнитное поле - вот оно и влияет на электрическое состояние полупроводника.

Давайте рассмотрим, как работает и выясним, в чем же его основное отличие от биполярного “собрата”. При появлении необходимого потенциала на его затворе появляется электромагнитное поле. Оно влияет на сопротивление перехода сток-исток перехода. Вот некоторые преимущества, которые дает использование этого прибора.

При проектировании и работе с этими элементами, необходимо учитывать, что МДП-транзисторы очень чувствительны к перенапряжению в схеме и То есть прибор может выйти из строя при прикосновении к управляющим выводам. При монтаже или демонтаже используйте специальное заземление.

Перспективы в использовании этого прибора очень хорошие. Благодаря своим уникальным свойствам, он нашел широкое применение в различной электронной аппаратуре. Инновационным направлением в современной электронике является использование силовых IGBT-модулей для работы в различных цепях, в том числе, и индукционных.

Технология их производства постоянно совершенствуется. Ведутся разработки по масштабированию (уменьшению) длины затвора. Это позволит улучшить и так уже неплохие эксплуатационные параметры прибора.

На принципиальных схемах можно встретить обозначения полевого транзистора той или иной разновидности.

Чтобы не запутаться и получить наиболее полное представление о том, какой всё-таки транзистор используется в схеме, сопоставим условное графическое обозначение униполярного транзистора и его отличительные свойства, и особенности.

Независимо от разновидности полевого транзистора он имеет три вывода. Один из них называется Затвор (З). Затвор является управляющим электродом, на него подают управляющее напряжение. Следующий вывод зовётся Исток (И). Исток аналогичен эмиттеру у биполярных транзисторов. Третий вывод именуется Сток (С). Сток является выводом, с которого снимается выходной ток.

На зарубежных электронных схемах можно увидеть следующее обозначение выводов униполярных транзисторов:

    G – затвор (от англ. – G ate «затвор», «ворота»);

    S – исток (от англ. – S ource «источник», «начало»);

    D – сток (от англ. – D rain «отток», «утечка»).

Зная зарубежные обозначения выводов полевого транзистора, будет легко разобраться в схемах импортной электроники.

Обозначение полевого транзистора с управляющим p-n – переходом (J-FET).

Итак. Транзистор с управляющим p-n – переходом обозначается на схемах так:


n-канальный J-FET


p-канальный J-FET

В зависимости от типа носителей, которые используются для формирования проводящего канала (область, через которую течёт регулируемый ток), данные транзисторы могут быть n-канальные и p-канальные. На графическом обозначении видно, что n-канальные изображаются со стрелкой, направленной внутрь, а p-канальные наружу.

Обозначение МДП-транзистора.

Униполярные транзисторы МДП типа (MOSFET) имеют немного иное условное графическое обозначение, нежели J-FET"ы c управляющим p-n переходом. MOSFET"ы также могут быть как n-канальными, так и p-канальными.

MOSFET"ы существуют двух типов: со встроенным каналом и индуцированным каналом .

В чём разница?

Разница в том, что транзистор с индуцированным каналом открывается только при подаче на затвор положительного или только отрицательного порогового напряжения. Пороговое напряжение (U пор ) – это напряжение между выводом затвора и истока, при котором полевой транзистор открывается и через него начинает протекать ток стока (I c ).

Полярность порогового напряжения зависит от типа канала. Для мосфетов с p-каналом к затвору необходимо приложить отрицательное «-» напряжение, а для тех, что с n-каналом, положительное «+» напряжение. Мосфеты с индуцированным каналом ещё называют транзисторами обогащённого типа . Поэтому, если услышите, что говориться о мосфете обогащенного типа – знайте, это транзистор с индуцированным каналом. Далее показано его условное обозначение.


n-канальный MOSFET


p-канальный MOSFET

Основное отличие МДП-транзистора с индуцированным каналом от полевого транзистора со встроенным каналом заключается в том, что он открывается только при определённом значении (U пороговое) положительного, либо отрицательного напряжения (зависит от типа канала – n или p).

Транзистор же со встроенным каналом открывается уже при «0», а при отрицательном напряжении на затворе работает в обеднённом режиме (тоже открыт, но пропускает меньше тока). Если же к затвору приложить положительное «+» напряжение, то он продолжит открываться и перейдёт в так называемый режим обогащения - ток стока будет увеличиваться. Данный пример описывает работу n-канального mosfet"а со встроенным каналом. Их ещё называют транзисторами обеднённого типа . Далее показано их условное изображение на схемах.



На условном графическом обозначении отличить транзистор с индуцированным каналом от транзистора со встроенным каналом можно по разрыву вертикальной черты.

Иногда в технической литературе можно увидеть изображение МОП-транзистора с четвёртым выводом, который является продолжением линии стрелки указывающей тип канала. Так вот, четвёртый вывод – это вывод подложки (substrate). Такое изображение мосфета применяется, как правило, для описания дискретного (т.е. отдельного) транзистора и используется лишь как наглядная модель. В процессе производства подложку обычно соединяют с выводом истока.


MOSFET с выводом подложки (substrate)


Обозначение мощного МОП-транзистора

В результате соединения истока и подложки в структуре полевого mosfet"а между истоком и стоком образуется встроенный диод . На работу прибора данный диод не влияет, поскольку в схему он включен в обратном направлении. В некоторых случаях, встроенный диод, который образуется из-за технологических особенностей изготовления мощного MOSFET"а можно использовать на практике. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты самого элемента.


Встроенный диод на условном обозначении мощного МДП-транзистора может и не указываться, хотя реально такой диод присутствует в любом мощном полевике.

Полевой транзистор

Полевой транзистор (англ . field-effect transistor, FET) - полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля , создаваемого входным сигналом.

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды - исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика . Так как исходным полупроводником для полевых транзисторов обычно является кремний , то в качестве диэлектрика используется слой двуокиси кремния SiO 2 , выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 10 10 …10 14 Ом (у полевых транзисторов с управляющим p-n-переходом 10 7 …10 9), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (U ЗИпор ).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой - канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, - ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших U ЗИпор ) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших U ЗИпор , у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда - дырки . Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-транзисторы со встроенным каналом

Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки U ЗИотс , то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта в зависимости от напряжения U ЗИ

1. Транзистор закрыт

Пороговое значение напряжения МДП транзистора

2. Параболический участок.

Удельная крутизна передаточной характеристики транзистора.

3. Дальнейшее увеличение приводит к переходу на пологий уровень.

- Уравнение Ховстайна.

МДП-структуры специального назначения

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO 2 и толстый слой нитрида Si 3 N 4 . Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO 2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO 2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500-1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ) , которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы (англ. )). В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа , область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя - спейсера .

Области применения полевых транзисторов

Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур , которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах .

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, - наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.

Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры . В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.

См. также

Ссылки

Примечания

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор · Мемристор
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные

В отличие от полевых транзисторов с p-n-переходом, в которых затвор имеет непосредственный электрический контакт с близлежащей областью токопроводящего канала, в МДП-транзисторах затвор изолирован от указанной области слоем диэлектрика.

По этой причине МДП-транзисторы относят к классу полевых транзисторов с изолированным затвором.

МДП-транзисторы (структура металл - диэлектрик - полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. Отсюда другое название этих транзисторов - МОП-транзисторы (структура металл - окисел - полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012-1014 Ом).

Рис. 5.6. Условные обозначения МДП-транзисторов со встроенным каналом n-типа (а), р-типа (б) и выводом от подложки (в); с индуцированным каналом n-типа (г), р-типа (д) и выводом от подложки (е)

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов - со встроенным и с индуцированным каналом.

МДП-транзисторы представляют собой в общем случае четырех- электродный прибор. Четвертым электродом (подложкой), выполняющим вспомогательную функцию, является вывод от подложки исходной полупроводниковой пластины. МДП-траизисторы могут быть как с каналом п- или р-типа. Условные обозначения МДП-транзистров показаны на рис. 5.6 а-е.

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом п-типа показана на рис. 5.7, а. В исходной пластине кремния р-типа с помощью диффузионной технологии созданы области истока, стока и канала п-типа. Слой окисла SiO2 выполняет функции защиты поверхности, близлежащей к истоку и стоку, а также изоляции затвора от канала. Вывод подложки (если он имеется) иногда присоединяют к истоку.

Стоковые (выходные) характеристики полевого транзистора со встроенным каналом п-типа для случая соединения подложки с истоком показаны на рис. 5.7, б. По виду эти характеристики близки к характеристикам полевого транзистора с p-n-переходом. Рассмотрим характеристику при Uзи = 0, что соответствует соединению затвора с истоком. Внешнее напряжение приложено к участку исток - сток положительным полюсом к стоку. Поскольку Uзи = 0, через прибор протекает ток, определяемый исходной проводимостью канала. На начальном участке 0-а, когда падение напряжения в канале мало, зависимость Ic(Ucи) близка к линейной. По мере приближения к точке б падение напряжения в канале приводит ко все более существенному влиянию его сужения (пунктир на рис. 5.7, а) на проводимость канала, что уменьшает крутизну нарастания тока на участке а-б. После точки б токопроводящий канал сужается до минимума, что вызывает ограничение нарастания тока и появление на характеристике пологого участка II.

Рис. 5.7. Конструкция МДП-транзистора со встроенным каналом п-типа (а); стоко-затворная характеристика (б); стоко-затворная характеристика (в)

Покажем влияние напряжения затвор - исток на ход стоковых характеристик.

В случае приложения к затвору напряжения (Uзи При подаче на затвор напряжения Uзи > 0 поле затвора притягивает электроны в канал из р-слоя полупроводниковой пластины. Концентрация носителей заряда в канале увеличивается, что соответствует режиму обогащения канала носителями. Проводимость канала возрастает, ток Iс увеличивается. Стоковые характеристики при Uзи > 0 располагаются выше исходной кривой (Uзи = 0).

Для транзистора имеется предел повышения напряжения Uсз ввиду наступления пробоя прилежащего к стоку участка сток - затвор. На стоковых характеристиках пробою соответствует достижение некоторой величины Uси.пр. В случае Uзи 0 (режим обогащения).

Конструкция МДП-транзистора с индуцированным каналом п-типа показана на рис. 5.8, с. Канал проводимости тока здесь специально не создается, а образуется (индуцируется) благодаря притоку электронов из полупроводниковой пластины в случае приложения к затвору напряжения положительной полярности относительно истока. За счет притока электронов в приповерхностном слое происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал п-типа, соединяющий области стока и истока. Проводимость канала возрастает с повышением приложенного к затвору напряжения положительной полярности. Таким образом, транзистор с индуцированным каналом работает только в режиме обогащения.

Стоковые (выходные) характеристики полевого транзистора с индуцированным каналом п-типа приведены на рис. 5.8, б. Они близки по виду аналогичным характеристикам транзистора со встроенным каналом и имеют тот же характер зависимости Iс = F(Uси). Отличие заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Iс равен нулю при Uзи = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока. Вид стоко-затворной характеристики транзистора с индуцированным каналом показан на рис. 5.8, в.

МДП-транзисторы обоих типов выпускаются на тот же диапазон токов и напряжений, что и транзисторы с р-п-переходом. Примерно такой же порядок величин имеют крутизна S и внутреннее сопротивление ri. Что касается входного сопротивления и межэлектродных емкостей, то МДП-транзисторы имеют лучшие показатели, чем транзисторы с p-n-переходом. Как указывалось, входное сопротивление у них составляет 1012-1014 Ом. Значение межэлектродных емкостей не превышает: для Сзи, Сси - 10 пФ, для Сзс - 2 пФ. Схема замещения МДП-транзисторов аналогична схеме замещения полевых транзисторов с p-n-переходом (см. рис. 5.5).

МДП-транзисторы широко применяются в интегральном исполнении. Микросхемы на МДП-транзисторах обладают хорошей технологичностью, низкой стоимостью, способностью работы при более высоком напряжении питания, чем микросхемы на биполярных транзисторах.

Рассмотрим принцип действия МДП-транзистора с индуцированным каналом n -типа.

При постепенном увеличении положительного относительно истока напряжения
и
на затворе образуется положительный заряд, а в приповерхностном слое полупроводника сначала образуется слой, обедненный основными носителями подложки (в данном случае - дырками).

При дальнейшем росте
свободные электроныp -полупроводника подложки (собственные, а не примесные) перемещаются в приповерхностную область под затвором и образуют индуцированный (наведенный полем) инверсный (с инверсной по отношению кp -полупроводнику подложки проводимостью) слой, который и представляет собой каналn -типа между истоком и стоком (рис. 10.18).

Напряжение
, при котором возникает канал, называется пороговым
. Канал отделяется от подложки отрицательными ионами акцепторов, т.е. обедненным носителями заряда слоем. При
происходит обогащение поверхностного слоя электронами и уменьшение сопротивления канала. Такой режим работы МДП-транзистора называется режимом обогащения. В МДП-транзисторах с индуцированным каналом существует только режим обогащения.

Если
и напряжение
, то при протекании по каналу тока стокаэквипотенциальная картина поля, изображенная на рис. 10.18, нарушается. Потенциал поверхности под действием тока стока увеличивается по направлению от истока к стоку, а разность потенциалов между затвором и поверхностью уменьшается, что в конечном итоге сужает канал. При увеличении напряжения
ток стокатоже растет с постепенным замедлением скорости роста. Когда падение напряжения на объемном сопротивлении канала от протекающего тока стокаскомпенсирует превышение напряжения
над пороговым, напряжение между стоком и затвором станет равным
и у стока произойдет смыкание обедненного слоя с поверхностью полупроводника, препятствуя дальнейшему росту тока стока(рис. 10.19).

Это называется насыщением тока стока. Напряжение
, при котором происходит насыщение тока стока, называется напряжением насыщения
.

При дальнейшем увеличении напряжения
сверх
ток стоканезначительно увеличивается только в силу уменьшения длины канала и, следовательно, уменьшения сопротивления канала (рис. 10.20).

Явление переноса носителей заряда (в данном случае электронов) из канала через обедненную область в сток подобно переходу зарядов из базы в коллектор биполярного транзистора через обратно смещенный pn -переход под действием его поля. Все приращения напряжения
сверх
прикладываются в основном к высокоомной обедненной области, расположенной у стока, в результате чего ток стокапочти не увеличивается.

Напряжение
существенно зависит от напряжения на подложке, так как с его ростом увеличивается область, обедненная зарядами. Обычно в МДП-структурах сn -каналом на подложку подают наиболее отрицательный потенциал схемы, чтобы переход «исток - подложка» всегда был закрыт. Влияние постоянного напряжения между истоком и подложкой можно учесть, включив его с определенным коэффициентом в выражение для
.

На рис. 10.17 – 10.20 проведены четкие границы между зарядовыми областями МДП-структуры. Реально изменение концентраций зарядов плавное, и резко обозначенных границ между областями зарядов не существует.

При больших напряжениях на стоке
может произойти пробой МДП-транзистора, при этом может быть два вида пробоя: пробойpn -перехода под стоком и пробой диэлектрика под затвором. Пробойpn -перехода обычно имеет лавинный характер, так как МДП-транзисторы изготавливаются обычно на основе кремния. При этом на пробивное напряжение
может влиять напряжение на затворе: так как на сток и на затвор МДП-транзистора с индуцированным каналом подаются потенциалы одной полярности, то с увеличением напряжения на затворе будет увеличиваться
. Пробой диэлектрика под затвором может происходить при напряжении на затворе всего в несколько десятков вольт, так как толщина слоя диоксида кремния около 0,1 мкм. Пробой обычно имеет тепловой характер. Этот вид пробоя может возникать в результате накопления статических зарядов, так как входное сопротивление МДП-транзисторов велико. Для исключения возможности такого вида пробоя вход МДП-транзистора часто защищают стабилитроном, ограничивающим напряжение на затворе.

Семейство статических характеристик
при
МДП-транзистора с индуцированным каналом, построенное в соответствии со сказанным приведено на рис. 10.21.

участок резкого изменения тока и участок, на котором изменение тока мало.

Параметром семейства выходных характеристик биполярного транзистора является ток базы – прибор управляется током; для МДП-транзистора с индуцированным каналом параметром семейства выходных характеристик является напряжение на затворе
- прибор управляется напряжением. С увеличением напряжения
сопротивление канала уменьшается, и ток стокавозрастает – характеристика идет выше. Выходные ВАХ МДП-транзистора выходят из начала координат, в то время как выходные ВАХ биполярного транзистора могут быть сдвинуты по оси напряжений.

На графике семейства
при
МДП – транзистора с индуцированным каналом (рис. 10.21) можно выделить три основные рабочие области:

1 – область отсечки выходного тока: транзистор закрыт (
), и в цепи стока протекает малы ток, обусловленный утечкой и обратным током стокового перехода (10 -6 А)4

2 – активная область (пологая часть выходных ВАХ, для которой
и
) – область, где выходной токостается практически неизменным с ростом
;

3 – область открытого состояния (крутая часть выходной ВАХ): ток в этой области работы задается внешней цепью.

Таким образом, в области 1 рабочая точка находится, если МДП-транзистор заперт, в области 3 – если открыт; эти области соответствуют статическим состояниям МДП-транзистора в ключевом режиме эксплуатации. Активная область (область 2) для ключевого режима МДП-транзистора является областью динамического состояния: в этой области рабочая точка находится кратковременно в течение переходного процесса из одного статического состояния в другое (из закрытого в открытое и наоборот).

В активной области рабочая точка находится при эксплуатации МДП-транзистора в усилительном режиме, когда между входными и выходными сигналами сохраняется линейная зависимость.

В области 4 достаточно больших напряжений
наступают предпробойные явления, а затем и пробой, сопровождающийся резким увеличением тока. Область пробоя определяет выбор предельно допустимых напряжений.

Характер статических характеристик передачи
при
ясен из принципа действия МДП-транзистора с индуцированным каналом. Характеристики для разных напряжений
выходят из точки на оси абсцисс, соответствующей
.(рис. 10.22).

Интересным и важным с точки зрения применения МДП-транзисторов является температурное изменение статических характеристик передачи. Эти изменения вызваны различными физическими процессам, которые приводят к тому, что с увеличением температуры пороговое напряжение
уменьшается.

быть как отрицательными, так и положительными, а также нулевыми в определенной рабочей точке статических характеристик.

Обычно эффект температурной компенсации получается при напряжениях на затворе, незначительно превышающих
. Кроме того, еще надо учитывать, что крутизнахарактеристики передачи, определяющая усилительные свойства МДП-транзистора, изменяется с температурой даже при неизменном постоянном токе стока.

Рассмотрим принцип действия МДП-транзистора со встроенным каналом n -типа (рис. 10.24).

Модуляция сопротивления проводящего канала может происходить при изменении напряжения на затворе как положительной, так и отрицательной полярности. При напряжениях
и
через каналn -типа течет ток. Если
, то затвор заряжается отрицательно, а в расположенном под ним приповерхностном слое вследствие ухода из него свободных электронов появляется положительный заряд ионов. Обедненный основными носителями слой увеличивает сопротивление канала. При достижении
обедненный слой перекрывает канал, и ток через него не течет. Имеет место режим отсечки. При
происходит обогащение канала носителями заряда (в данном случае электронами), его сопротивление уменьшается, что приводит к увеличению тока стока.

Таким образом, МДП-транзистора со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала носителями заряда.

Семейство выходных статических характеристик и статическая характеристика передачи МДП-транзистора со встроенным каналом n -типа приведены на рис. 10.25.

выходные статические характеристики

характеристика передачи