Принципы классификации вирусов. Репродукция вирусов (фазы взаимодействия с клеткой хозяина). Основные стадии репродукции вируса в клетке хозяина. Особенности репродукции ЖК-вирусов Процесс репродукции вирусов

Репродукция вирусов (от англ, reproduce . воспроизводить) осуществляется в несколько стадий, последовательно сменяющих друг друга:

· адсорбция вируса на клетке;

· проникновение вируса в клетку;

· «раздевание» вируса;

· биосинтез вирусных компонентов в клетке;

· формирование вирусов;

· выход вирусов из клетки

Адсорбция.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е.

прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны, так называемых, рецепторах.

Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Поверхностные структуры вируса, «узнающие» специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Способность вирусов избирательно поражать определенные клетки органов и тканей организма называют тропизмом вирусов (от греч. tropos . направление).

Проникновение в клетку .

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание» вируса

Процесс «раздевания» заключается в удалении защитных вирусных оболочек и

освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.



Биосинтез компонентов вируса .

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства. Реализация генетической информации вируса осуществляется в соответствии с хорошо известными из биологии процессами транскрипции (от лат.transcriptio . переписывание, т.е. синтез информационных РНК, комплементарных матричным ДНК или РНК), трансляции (от лат. translatio . передача, т. е. синтез белков на рибосомах клетки с участием иРНК) и репликации (от лат. replicatio . повторение, т. е. синтез молекул нуклеиновой кислоты, гомологичных геному). Поскольку генетический аппарат вирусов остаточно разнообразен, то передача наследственной информации в отношении синтеза иРНК различна. Основные схемы реализации вирусной генетической информации могут быть представлены следующим образом:

Для синтеза иРНК одни вирусы используют клеточные ферменты, другие - собственный набор ферментов (полимераз).

Вирусная нуклеиновая кислота кодирует синтез двух классов белков: неструктурных белков-ферментов, которые обслуживают процесс репродукции вирусов на разных его этапах, и структурных белков, которые войдут в состав вирусных частиц потомства. Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т. е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дисъюнктивным (от лат. disjunctus - разобщенный).



Формирование (сборка) вирусов .

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, ионных и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

· формирование вирусов является многоступенчатым процессом і с образованием промежуточных форм;

· сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

· формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

· сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки.

Различают два основных типа выхода вирусного потомства из клетки. Первый тип. взрывной. характеризуется одновременным выходом большого

количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.).

Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Питательные Среды. Требования, предъявляемые к питательным средам. Типы питательных сред.

Питательные среды должны содержать в достаточном количестве источники углерода, азота, неорганические соли, в ряде случаев - ро­стовые факторы (витамины, аминокислоты), быть влажными, чтобы процесс простой диффузии проходил без затруднения, прозрачными (по возможнос­ти), чтобы визуально или под микроскопом можно было наблюдать рост микробов, стерильными, иметь оптимальные концентрации водородных ионов (рН среды) и окислительно-восстановительный потенциал. Источ­ником азота для микроорганизмов являются белки, но большинство мик­робов неспособны усваивать нативный белок, поэтому используются про­дукты кислотного и ферментного расщепления белка: пептон, казеин.

Исходными компонентами искусственной питательной среды является мясная вода, кислотный и ферментный гидролизат казеина, свернутой крови. К основе добавляют хлорид натрия, пептон

Мясная вода содержит минеральные вещества, углеводы, витамины. Для получения мясной воды нежирное мясо, очищенное от сухожилий, измельчают на мясорубке, заливают двойным объемом воды, кипятят на огне, фильтруют, доливают водопроводной воды до первоначального объема, разливают по бутылкам истерилизуют.

Казеин пищевой кислотный содержит полноценный набор аминокислот, характеризуется высокой питательностью, является отходом молочной промышленности. Из казеина готовят перевар.

Пептон – продукт неполного переваривания белка, содержит альбумозы, пептоны и полипептиды аминокислот в незначительном коли­честве, состав их зависит от глубины расщепления белка. Пептон представляет собой порошок светло-желтого цвета, хорошо растворяется в воде, не свертывается при нагревании. Используется как источник азота и углерода.

При приготовлении сред все компоненты смешивают воде, греют или кипятят для растворения агар-агара, прозрачность придают путем фильтрования через ватно-марлевые или тканевые фильтры или осветляют добавлением куриного белка или свежей сыворотки крови, устанавливают рН среды с помощью индикаторов колориметрическим или электрометрическим способом и стерилизуют.

Классификация питательных сред


Питательные Транспортные Консервирующие


Естественные Искусственные

Синтетические

Простые Специальные Дифференциально- Элективные (Селективные)

диагностические


Плотные Жидкие

Естественные среды представляют собой природные субстраты (молоко, кровь, желчь, сыворотка, картофель). Искусственные содержат смесь природных органических веществ и продуктов их кислотного или ферментативного распада. Синтетические среды состоят из буферной солевой основы и растворов аминокислот, углеводов, пуринов, пиримидинов, нуклеотидов, нуклеозидов, жирных кислот, витаминов в точно установленных дозировках. В качестве источников азота в них используются аминокислоты. Достоинство этих сред в том, что они имеют постоянный состав, по ним можно определить потребности микробов в тех или иных питательных веществах.

Плотные питательные среды готовят из жидких с добавлением уплотнителя. В качестве уплотнителя обычно применяют агар-агар. Агар-агар – продукт, получаемый из морских водорослей, представляет собой желтоватый порошок или пластинки, содержит высокомолекулярные полисахариды, не расщепляется большинством микроорганизмов, не разрушается при автоклавировании, питательную ценность сред не изменяет, не подавляет рост микробов. Для иммунологических и бактериологических полей используется вымороженный, осветленный агар, который при кипячении или автоклавировании смеси порошка с водой расплавляется при температуре 85-100°С, а при охлаждении до 45-48°С образует гель.

Для приготовления, плотных питательных сред агар-агар добавляют в концентрации от 1,5 до 3%.

Простые среды.

Мясо-пептонный бульон (МПБ) является белковой основой всех сред. Существует несколько способов приготовления МПБ:

а) на мясной воде с добавлением готового пептона – это так называемый мясопептонный бульон;

б) на переварах продуктов гидролиза исходного сырья при помощи ферментов (трипсина – бульон Хоттингера, пепсина – бульон Мартена).

Мясо-пептонный агар (МПА) – получают путей добавления к МПБ arap-arapa (l,5-3%). Если МПА распределен по диагонали пробирки или флакона – это скошенный агар. Для его получения пробирки для засты­вания среды оставляют в наклонном положении. Если среда распределе­на в пробирке вертикально высотой 5-7 см, это агар столбиком. МПА, застывший в чашках Петри в виде пластинки – пластинчатый агар. Если среда имеет вертикальный слой высотой 2-3 см, и диагональный слой такой же величины, это полускошенный агар.

Специальные питательные среды – среды, на которых создаются условия для выращивания тех бактерий, которые не растут на простых средах. Кровяной агар или кровяной бульон – получают путем добавле­ния к питательной среде 5-10% подогретой стерильной дефибринированной крови барана, кролика лошади, человека. Среда используется для выделения стрептококков, пневмококков и других бактерий, а также для изучения гемолитической активности. Сывороточный бульон или сывороточный агар получают, путем добавления к простым средам 15-20% лошадиной или бычьей сыворотки. Среда применяется для выделения пневмококков, менингококков. Желчный бульон или желчный агар получают путем добавления к питательной среде медицинской желчи без консерванта, или свежеполученной от крупного рогатого скота. Среда применяется для выделения брюшнотифозных, паратифозных и дизенте­рийных палочек. Специальные среды для культивирования анаэробных бактерий: среда Китта-Тароцци состоит из питательного бульона, глю­козы и кусочков печени или мясного фарша для адсорбции кислорода.

Желатин – животный белок, продукт частичного гидролиза коллагена. Имеет вид бесцветных или светло-желтых пластинок без запаха и вкуса. В холодной воде набухает, сильно поглощая воду. При темпера­туре 30°С растворяется, при охлаждении до 20-22°С превращается в гель (студень). Используется в микробиологии для изучения протеолитических ферментов.

Дифференциально-диагностические среды позволяют различить один вид микроба от другого. Принцип построения дифференциально-диагностических сред основан на разной биохимической активности бактерий. В состав дифференциально-диагностических сред входит основная пи­тательная среда, обеспечивающая размножение бактерий, определенный химический субстрат, различное отношение к которому является диагнос­тическим признаком, индикатор, изменение цвета которого свидетельству­ет о разложении субстрата и образовании кислых продуктов.

Агар Эндо – плотная среда, применяется для выделения и первичной идентификации энтеробактерий. В состав ее входят, кроме питательной основы, лактоза и основной фуксин, обесцвеченный сульфитом и фосфатом натрия. Правильно приготовленная среда бесцветна или имеет слегка розовый оттенок. Колонии бактерий (кишечная палочка), ферментирующие лактозу, окрашиваются на ней в красный цвет; бактерии, не ферментирующие лактозу (сальмонеллы), остаются бесцветными.

Среда Левина (лактозоэозинметиленовый агар) – среда для выделения энтеробактерий. Колонии лактозоферментирующих бактерий окрашены в темно-синий или черный цвет, колонии лактозоотрицательных бактерий вырастают под цвет среды (светло-фиолетового цвета).

Среды Гисса – набор определенных углеводов для изучения ферментативной активности бактерий и их дифференциации по этим признакам.

Элективные питательные среды содержат дополнительные вещества, задерживающие рост грамположительных бактерий. Селективные питательные среды стимулируют рост одних микробов и угнетают рост других. Селективные условия получают путем добавления в сре­ду химических веществ. Так как в этих средах патогенные бактерии размножаются и накапливаются, их называют также средами обогащения.

Среда Плоскирева – плотная питательная среда, содержащая со­ли желчных кислот, бриллиантовый зеленый, лактозу и индикатор. Эта среда является не только селективной, так как подавляет рост многих микробов и способствует лучшему росту возбудителей брюшного тифа, паратифов, дизентерии, но и дифференциально-диагностической, так как лактозоотрицательные бактерии (шигеллы) образуют на ней бесцветные колонии, а лактозоположительные – кирпично-красные.

Селенитовая среда - является лучшей средой обогащена для сальмонелл и дизентерийных микробов Зонне. Селенит натрии, содержащийся в среде, стимулирует рост этих бактерий и подавляет рост сопутствующей флоры.

Среда Мюллера служит для накопления сальмонелл. К питатель­ной среде добавлют мел, раствор Люголя и гипосульфит натрия. При взаимодействии этих веществ образуется тетратионат натрия, который угнетает рост кишечных палочек, но создает благоприятные условия для размножения сальмонелл.

Висмут-сульфит агар (среда Вильсона-Блера) – содержит соли висмута, бриллиантовую зелень. Сальмонеллы растут на этой среде в виде колоний чернота цвета. Другие виды бактерий на этой среде роста не дают.

Желточно-солевой агар (ЖСА) –среда для выделе­ния стафилококков, содержит до 10% хлорида натрия, что подавляет большинство бактерий, содержащихся в материале. Кроме того, эта сре­да является и дифференциально-диагностической, так как присутствие яичного желтка позволяет выявить фермент лецитиназу (лецитовителлазу), который образуют патогенные стафилококки. Лецитиназа расщеп­ляет лецитин на фосфорхолины и нерастворимые в воде жирные кисло­ты, поэтому среда вокруг лецитиназоположительных колоний мутнеет и появляется опалесцирующая зона в виде «радужного венчика».

Теллуритовые среды (сывороточно-теллуритовый агар, кровяно-теллуритовый агар) – селективные среды для выделения дифтерийных бактерий, содержат теллурит калия. Бесцветная соль теллура, содержащаяся в питательной среде, восстанавливается дифтерийными бактерия­ми до металла, окрашивающего колонии в черный цвет.

Щелочной агар элективен для холерных вибрионов, щелочная реакция среды (рН 9,0) не препятствует росту холерных вибрионов, но тормозит рост других микроорганизмов.

Консервирующие среды – среды, содержат добавки, предупреждающие размножение и гибель микробов, что способствует сохранению их жизнеспособности. Консервирующие среды применяются когда нет возможности быстрого посева на питательные среды. Для бактерий наиболее употребительны консерванты:

а) глицериновая смесь, состоящая из 0,5 л химически чистого
глицерина и 1,0 л физиологического раствора.

б) боратная смесь

в) фосфатно-буферная смесь

Для длительного сохранения свежевыделенных и производствен­ных культур применяют полужидкий голодный агар, в этой среде при пониженной жизнедеятельности микробов продукты обмена накапливаются незначительно, что способствует хорошему сохранению культур.

Специальные среды.

В бактериологии широко применяются сухие питательные среды промышленного производства, которые представляют собой гигроскопические порошки, содержащие все компоненты среды, кроме воды. Для их приготовления используются триптические перевары дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин). Они удобны при транспортировке, могут длительно храниться, избавляют лаборатории от громадного процесса приготовления сред, приближают к разрешению вопроса о стандартизации сред. Медицинская промышлен­ность производит сухие среды Эндо, Левина, Плоскирева, висмутсульфит агар, питательный агар, углеводы с индикатором ВР и другие.

Термостаты

Для культивирования микроорганизмов используют термостаты.

Термостат – это аппарат, в котором поддерживают постоянную температуру. Прибор состоит из нагревателя, камеры, двойных стенок, между которыми циркулирует воздух или вода. Температура регулируется тер­морегулятором. Оптимальная температура для размножения большинства микроорганизмов 37°С.

11. Условия успешной антибиотикотерапии. Отрицательные стороны антибиотикотерапии. Действие антибиотиков на микробы в зависимости от дозы препарата. Методы определения чувствительности микробов к антибиотикам.

Рациональная антибиотикотерапия

Врач всегда должен помнить, что назначать антибиотики следует только при инфекциях бактериальной этиологии. Выбор антибиотиков должен основываться на знании их природной активности в отношении предполагаемых или установленных возбудителей заболевания, а также на локальных и региональных данных о резистентности микроорганизмов. Следует назначать только препараты с доказанной клинической эффективностью при инфекциях данной локализации, обращая при этом внимание на форму выпуска, профиль безопасности, возможность межлекарственных взаимодействий и др.

Обеспечить высокую эффективность лечения может только своевременное начало антибактериальной терапии. Не менее важными являются адекватное дозирование, оптимальная длительность курса антибактериальной терапии и своевременная оценка эффективности стартового антибиотика (через 48-72 ч от начала лечения). Существенную роль играет и оптимальное соотношение стоимость/эффективность. При выборе препарата и проведении антибактериальной терапии обязательно учитываются особенности пациента (возраст, масса тела, физиологические состояния (беременность, период лактации), иммунодефицитные состояния, сопутствующие заболевания, поведенческие стереотипы и др.) и течение заболевания (локализация, клинические проявления, тяжесть и др.).

Отрицательные стороны антибиотикотерапии

  • Дисбактериоз: антибиотики убивают полезную и патогенную микрофлору. Выраженность дисбактериоза зависит от дозы, продолжительности, типа лекарства и возраста человека. Как правило, после основной болезни маленьким детям приходится восстанавливать микрофлору. Как этого избежать? Параллельно с антибиотиками (2–3 раза в день) и 2 недели после лечения пить пробиотики (эубиотики) – бактерии для микрофлоры кишечника. Тогда дисбактериоза не будет либо его проявления уменьшатся.
  • Опасно пить женщинам в первом триместре беременности. Но если имеется болезнь, угрожающая жизни матери и ребенку, врач выбирает наименьшее зло. Не рекомендуется принимать кормящим грудью женщинам.
  • Индивидуальная непереносимость, аллергия или побочные эффекты. Об этом необходимо уведомить врача перед назначением антибиотика или после назначения, если побочные явления появились впервые, и врач сменит лекарство.

Важное условие рациональной антибиотикотерапии - правильный выбор препарата и назначение достаточных доз, способных оказать пагубное действие на
микроорганизм. Назначение препарата в малых дозах может способствовать развитию резистентности микробов.

Определение чувствительности к антибиотикам

А) методом дисков.

На поверхность питательного агара засевают газоном испытуемую культуру (стафилококк, кишечная палочка). Чашки приоткрывают и подсушивают при комнатной температуре 10-15 минут. Затем накладывают диски пинцетом на расстоянии 2 см друг от друга и от краев чашки. Чашки помещают в термостат для инкубации на 18-20 часов, перевернутыми кверху дном, после чего учитывают результат. Чашки помещают кверху дном на темную матовую поверхность, учет проводят в отраженном свете. С помощью линейки и измерителя определяют диаметр зон задержки роста вокруг дисков, включая диаметр дисков. Оценку результатов проводят по таблицам, которые содержат пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных микроорганизмов.

Б) методом серийных разведении.

Этот метод является количественным, так как позволяет определить минимальную ингибирующую концентрацию, т.е. наименьшую концентрацию антибиотика, ингибирующую рост исследуемой культуры. Исследование начинают с приготовления основного раствора, из которого готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению до­бавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 10 6 -10 7 бактериальных клеток в 1 мл. Для контроля ис­пользуют посев культуры на бульон без антибиотика. Посевы инкубируют при 37°С 18-20 часов. В контроле появится рост (пробирка станет мутной). Пробирки с прозрачной питательной средой указывают на задержку роста испытуемой культуры, а последняя пробирка с прозрачной питательной средой содержит наименьшую ингибирующую дозу антибиотика, определяющую сте­пень чувствительности испытуемой культуры к антибиотику.

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция . Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны - так назы-ваемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:



1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми-руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Этапы репродукции вируса

Парамиксовирусы с помощью гликопротеиновых рецепторов адсорбируются на чувствительных клетках хозяина. Проникновение вириона в клетки происходит путем рецепторного эндо-цитоза или при слиянии вирусной оболочки с цитоплазматической мембраной. Репликация вирусной РНК происходит в цитоплазме инфицированных клеток. При формировании вирионов происходит модификация отдельных участков цитоплазматической мембраны клетки-хозяина за счет встраивания в нее с наружной стороны вирусных гликопротеинов, а с внутренней - мембранного белка. К модифицированным участкам клеточной мембраны по актиновым нитям цитоскелета транспортируются вирусные нуклеокапсиды. Выход вирусных частиц осуществляется путем почкования. В цитоплазме инфицированных клеток образуются ацидофильные включения.

Антигенная структура и антигенная вариабельность

Антигенная структура вируса изучена слабо. Морфологическое сходство с вирусом кори человека дало возможность предположить аналогичность их антигенного состава. Основные антигены вируса кори -- гемагглютинин, белок F и нуклеокапсидный белок NP. AT к гемагглютинину и F-протеину проявляют цитотоксическое действие, направленное против инфицированных клеток.

Антигенная вариабельность. Вирус чумы в иммунобиологическом отношении однороден, в то же время по происхождению и некоторым биологическим особенностям его штаммы разделяют на две подгруппы: классические и вариантные. Классические штаммы высокопатогенны и проявляют строгую видовую специфичность.

Гемагглютинирующие и гемадсорбирующие свойства

Вирусная оболочка состоит из трех белков: гемагглютинина (Н), белка слияния (F) и матриксного (М). Также в серологических реакциях у вируса выявлены комплементсвязывающий, преципитирующий, нейтрализующий и гемагглютинирующие антигены. В связи с этим вирус способен нерегулярно агглютинировать эритроциты цыплёнка и морской свинки. Феномен гемагглютинации у вируса считают неспецифическим.

Считается, что рецепторами для адсорбции вируса являются сиаловые кислоты, имеющиеся на мембране макрофагов. В то же время установлено, что вирус чумы плотоядных лишен нейраминидазной активности. Поэтому связывание гемагглютинина с сиаловыми кислотами мембраны носит довольно слабый, лабильный характер, что снижает для вируса опасность "застрять" на поверхности клетки.

Особенности культивирования в различных живых системах

Первые опыты по культивированию вируса чумы плотоядных в эксплантатах ткани проводил Mitscheriich в 1938 г. Позднее его размножали в эсплантатах селезенки, мезентериальных лимфоузлов, легких и тестикул 10-14-дневных щенят. Авторы провели 19 пассажей, при этом титр вируса в эксплантатах селезенки достиг 2?104 ИД/г. Вирус чумы плотоядных активно размножается в первичных культурах клеток почки собак, хорьков, легких собак и хорьков; в первичной культуре клеток почки щенят 3-4 дневного возраста. В этих культурах на среде 199 с добавлением 20% сыворотки телят вирус образует бляшки под агаровым покрытием. В клетках HeLa и линии клеток печени человека вирус не вызывал ЦПЭ.

К вирусу чумы чувствительны и различные культуры клеток после его адаптации пассированием в них. В 1959 году впервые был выделен вирус от больных чумой собак путем культивирования в трипсинизированных кусочков легких или почек. В последующие годы он был также выделен в первичной культуре почек собаки, КРС, овцы, обезьяны, фибробластов эмбрионов кур и перепелов и др. К вирусу чувствительны и перевиваемые линии клеток Hela и Vero. При размножении некоторые штаммы вируса вызывают ЦПД, которое характеризуется зернистостью и округлением клеток с последующим разрушением монослоя и образованием многоядерных клеток и синцитий. Для выделения и поддержания в лабораторных условиях вируса используют молодых щенков. Однако значительно чувствительнее тхорзофретки. Материалами при выделении вируса в культуре клеток служат селезенка, печень, почка.

Вирус размножается в эмбрионах кур при инфицировании на хорионаллантоисную оболочку (ХАО), в аллантоисную полость и желточный мешок. Этот метод успешно используют также и для определения титра вируса на эмбрионах 8-9 -суточного возраста. Вирус титруют на ХАО. При размножении вируса у зараженных эмбрионов появляются изменения главным образом на хорион-аллантоисной оболочке в виде отечности и образования светло-серых узелков величиной с просяное зерно или тяжей светло-серого цвета.

При сравнительном изучении репродукции 3-х штаммов вируса чумы плотоядных на различных клеточных системах установлено, что у 1-го из них (шт. Рокборн) отсутствовало выраженное цитопатическое дейтвие, 2-й штамм накапливался в титре 3,5-5,0 lg ТЦДщ/wi и шт. Акбар-37 накапливался в титре 5,0-6,5 lg ТЦД50/мл (17). Штаммы, адаптированные к куриным эмбрионам, хорошо развиваются в культуре фибробластов куриных эмбрионов, перевиваемых линиях клеток HeLa ("бессмертные" клетки, не имеющие предела Хейфлика), Нер (клетки рака гортани)и др. Максимальное накопление адаптированных штаммов в культуре клеток отмечено на 8-9-й день. Вирус репродуцируется в культуре альвеолярных макрофагов легких собак. Через 2-6 дней в ней формируются характерные круглые многоядерные гигантские клетки, которые через 1-2 недель исчезают с образованием синцития. Адаптированный к клеткам Vero (клетки почки африкаской зеленой мартышки) шт. Green вируса чумы плотоядных способен образовывать бляшки в клетках Нер-2, BS-C-1 и HeLa, но не в клетках Vero и культуре клеток почки собак. Адаптированный к куриным эмбрионам или культуре клеток, вирус может размножаться во многих клеточных системах (собак, КРС, обезьян, человека). Вирус чумы плотоядных вызывает цитопатический эффект и титры его выше в роллерных культурах, чем в стационарных.

Предложен метод крупномасштабного культивирования вируса чумы плотоядных на микроносителях Gelaspker M (Lachema, Bruc) (диаметр 150-200 мкм), для чего клетки куриных эмбрионов или Vero выращивают в виде псевдосуспензионной культуры. При этом биологическое накопление вируса более чем в 10 раз превышало таковое при использовании стационарных культур.

Разработан метод дифференциации патогенных и аттенуированных штаммов вируса чумы плотоядных in vitro. МонАТ реагируют с нуклеокапсидным АГ аттенуированного шт. Onderstepoort, который культивируется в клетках Vero и не реагирует с патогенными шт. А75/17 и СН84, культивируемыми в первичных культурах клеток собак. Однако после нескольких пассажей в клетках Vero штаммы приобретали эпигон, реагирующий с монАТ, одновременно утрачивали патогенность для собак.

Шт. Д84-1 ВЧС, адаптированный к культуре фибробластов КЭ, вызывает выраженные ЦПИ в культуре клеток и незначительное бляшкообразование на ХАО. Шт. Д84-1 генетически стабилен и нейровирулентен для мышат.

Репродукция вирусов. Взаимодействие с хозяеном. Культивирование.

Вирусы не размножаются бинарным делением. В 50-х годах ХХ в. было установлено, что размножение вирусов происходит путем репродукции (англ. reproduce – воспроизводить, делать копию), т.е. путем воспроизведения их нуклеиновых кислот и синтеза белков с последующей сборкой вирионов. Эти процессы происходят в разных частях клетки хозяина (например, в ядре и цитоплазме). Такой разобщенный способ репродукции получил название дизъюнктивного.Репродукция вирусов характеризуется последовательной сменой отдельных стадий:

1) Адсорбция . Проникновение вирусной частицы в клетку начинается с ее адсорбции на клеточной поверхности благодаря взаимодействию клеточных и вирусных рецепторов. Рецепторы (лат. receptor – принимающий) – чувствительные специальные образования, воспринимающие раздражения, это молекулы или молекулярные комплексы на поверхности клеток, способные распознавать специфические химические группировки, молекулы или другие клетки и связывать их. У сложных вирионов рецепторы располагаются на внешней оболочке в виде шиповидных выростов или ворсинок, у простых вирионов – на поверхности капсида.

2) Проникновение вириона в клетку хозяина . Пути внедрения вирусов в чувствительные к ним клетки неодинаковы. Многие вирионы могут проникать в клетку путем пиноцитоза (греч. pino – пить, выпивать), когда образующаяся пиноцитарная вакуоль втягивает вирион внутрь клетки. Другие вирионы могут попадать в клетку прямым путем через ее оболочку.

3) Дезинтеграция (или "раздевание") вириона – освобождение НК от внешней оболочки и капсида. После проникновения вириона в клетку капсид претерпевает изменения, приобретает чувствительность к клеточным протеазам, разрушается, освобождая НК. У некоторых бактериофагов в клетку проникает свободная НК. Фитопатогенные вирусы проникают через повреждения в клеточной стенке, после чего адсорбируются на внутренних клеточных рецепторах и высвобождается НК.

4) Синтез вирусных белков и репликация НК . Синтез вирусоспецифичных белков происходит с участием информационных РНК (у одних вирусов они входят в состав вирионов, а у других синтезируются в зараженных клетках на матрице вирионной РНК или ДНК). Происходит репликация вирусных НК.

5) Сборка, или морфогенез вириона . Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их НК, что обеспечивается самосборкой белковых молекул вокруг НК

6) Выход вириона из клетки хозяина. Из клетки вирусные частицы выходят одновременно (при разрушении клеток) или постепенно (без разрушения клеток).



Репродукция вируса в клетке происходит в несколько фаз:

· Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

· Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

· Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

Адсорбция вирионов на клетке. Механизм адсорбции вириона на восприимчивой клетке основан на взаимодействии его рецепторов с комплементарными рецепторами клетки. Рецепторы клетки и вириона являются специфическими структурами, расположенными на их поверхности. Миксовирусы и аденовирусы адсорбируются на мукопротеиновых рецепторах, а пикорнавирусы и арбовирусы ― на липопротеиновых рецепторах. Нейраминидаза у вириона миксовирусов разрушает мукогфотеиновые рецепторы и отщепляет N-ацетилнейраминовую кислоту от олигосахарида, содержащего галактозамин и галактозу. Их взаимодействия на этом этапе обратимы, так как на них влияют температура, солевые компоненты и реакция среды. Адсорбции вириона на клетке препятствуют сульфатированные полисахариды и гепарин, несущие отрицательный заряд, но их ингибирующее действие снимается поликар-тионами (ДЭАЭ-декстран, экмолин, протамннсулъфат), которые нейтрализуют отрицательный заряд сульфатированных полисахаридов.

Проникновение вириона в клетку. Процесс проникновения вирионов в клетку у миксовирусов осуществляется ферментом нейраминидазой, который вступает в непосредственный контакт с мукопротеидами клетки. Научные факты, накопленные за последние годы, показывают, что РНК и ДНК вирионов не отделяются от внешней их оболочки, т. е. вирионы целиком проникают в чувствительную клетку путем виропексиса или пиноцитоза. Это доказано в отношении вирусов оспы, осповакцины и других вирусов животных. Что касается фагов, то они заражают клетки своей нуклеиновой кислотой. Механизм заражения основан на том, что вирионы, содержащиеся в вакуолях клетки, гидролйзуются ферментами (протеаз, липаз). При этом освобождается ДНК от внешней оболочки фага и проникает в клетку.

В эксперименте заражают клетки нуклеиновой кислотой, выделенной от некоторых вирусов, и вызывают один цикл репродукции "вирионов. Но в естественных условиях передача инфекции с помощью инфекционной кислоты не происходит.

Синтез вирусных структурных компонентов. Процессы синтеза компонентов РНК-вирусов происходят после проникновения нуклеопротеидов (вирионов) в клетку, где образуются вирусные полисомы путем комплексирования вирусной РНК с рибосомами. Затем синтезируются ранние белки: ре-прессоры клеточного метаболизма и РНК-полимеразы, транслируемые с родительской молекулой вирусной РНК. В цитоплазме мелких вирусов или в ядре (вирусы гриппа) образуется двунитчатая вирусная РНК путем комплексирования родительской «плюс»-це-почки с вновь синтезированной и комплементарной ей «минус»-це-почкой. Соединение этих нитей нуклеиновой кислоты обусловливает образование однонитчатой структуры РНК, называемой репликативной формой (РФ), которая устойчива к РНК-азе и необходима для репродукции всех РНК-вирусов. Синтез вирусной РНК осуществляется реплекативным комплексом, в котором участвуют фермент РНК-полимеразы, полисомы, репликативная форма РНК. Существуют два типа РНК-полимераз: РНК-полимераза I катализирует образование репликативной формы на матрице «плюс»-це-почки; РНК-полимераза II участвует в синтезе вирусной однонитчатой РНК на матрице репликативной формы. Синтез нуклеиновой кислоты у мелких вирусов осуществляется в цитоплазме. У вируса гриппа в ядре синтезируются РНК и внутренний белок. РНК выходит из.ядра и поступает в цитоплазму, где с рибосомами синтезирует вирусный белок, и образующийся рибонуклеопротеид входит в химический состав вириона.

Синтез компонентов ДНК-вирусов. После проникновения вирионов в клетку в ней подавляется синтез нуклеиновых кислот и клеточных белков. В ядре на матрице ДНК-вируса синтезируется и-РНК, несущая информацию для синтеза белков. Механизм синтеза вирусных белков осуществляется на клеточных рибосомах, и источником их построения является аминокислотный фонд клетки. Активизация аминокислот происходит ферментами, с помощью и-РНК переносятся в рибосомы (полисомы), где они располагаются в синтезированной молекуле белка.

Таким образом, в зараженной клетке синтез нуклеиновой кислоты и белков вириона происходит в составе сложного репликатив-но-транскриптивного комплекса, который, по-видимому, регулируется определенной системой контрольного механизма.

Формирование вириона осуществляется с участием структурных компонентов клетки. Вирусы полиомиелита, герпеса и осповакцины формируются в цитоплазме, а аденовирусов ― в "ядре. Синтез вирусной РНК и образование нуклеокапсида (S-анти-гена) происходит в ядре, а гемагглютцнина (V-антигена) ―в цитоплазме. Затем S-антиген переходит из ядра в цитоплазму, где осуществляется формирование оболочки вириона. S-антиген покрывается вирусными белками, и в состав вириона включаются-гемагглютинины и нейраминидаза. И так происходит формирование потомства вируса гриппа.

Выход вирусов из клетки. Вирионы освобождаются из клеток двумя способами. Первый способ ― после полного созревания вирионов внутри клетки последние округляются, в них образуются вакуоли, разрушается клеточная оболочка; вирионы выходят одновременно и полностью из клетки (рикорнавирусы). Этот способ называется литическим. Второй способ ― вирионы освобождаются по мере созревания их на цитоплазматической мембране в течение 2―6 часов (арбовирусы,и миксовирусы). Освобождению миксовирусов из клетки, по-видимому, способствует нейраминидаза, которая разрушает клеточную оболочку. При этом способе 75― 90% вирионов спонтанно выходят в культуральную среду и клетки погибают постепенно).

Оглавление темы "Типы микроорганизмов. Вирусы. Вирион.":
1. Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы.
2. Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.
3. Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида.
4. Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки (М-белки) вирусов. Репродукция вирусов.
5. Взаимодействие вируса с клеткой. Характер взаимодействия вирус-клетка. Продуктивное взаимодействие. Вирогения. Интерференция вирусов.

7. Проникновение вируса в клетку. Виропексис. Раздевание вируса. Теневая фаза (фаза эклипса) репродукции вирусов. Образование вирусных частиц.
8. Транскрипция вируса в клетке. Трансляция вирусов.
9. Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

По характеру взаимодействия генома вируса с геномом клетки выделяют автономное (геном вируса не интегрирован в геном клетки) и интеграционное (геном вируса интегрирован в геном клетки) инфицирование . Особую форму составляют латентное и персистирующее инфицирование .

Латентное инфицирование клеток вирусам . ДНК некоторых вирусов (герпесвирусы, ретровирусы) может находиться в клетке вне хромосом, либо вирусная ДНК интегрируется в ядерный геном, но вирусспецифические синтезы не происходят. Такая вирусная ДНК образует латентный провирус, реплицирующийся вместе с хромосомой. Подобные состояния вирусной ДНК нестабильны, возможны периодические реактивации с переходом в продуктивное взаимодействие «вирус-клетка», либо клетка трансформируется, давая начало злокачественному росту.

Персистирующее инфицирование клеток вирусам . Некоторые РНК-вирусы могут вызывать персистиру-ющие инфекции, проявляющиеся образованием дочерних популяций возбудителя после завершения острой фазы болезни. При этом происходит постепенное выделение вирусных частиц, но инфицированная клетка не лизируется. Нередко дочерние популяции вирионов дефектны (часто наблюдают у лиц с иммунодефицитами). Иногда такие хронические поражения протекают без клинических проявлений. В частности, вирус гепатита В способен вызывать персистирующее поражение гепатоцитов с развитием хронического гепатита; в дальнейшем возможна малигнизация клеток.

Репродуктивный цикл вирусов

Изображённые на рис. 2-3 этапы репродукции (от адсорбции вирионов до высвобождения дочерней популяции) происходят при продуктивном взаимодействии вируса с клеткой.


Рис. 2-3. Основные этапы репродукции вирусов .

Адсорбция вириона к клетке

Первая стадия репродуктивного цикла - адсорбция вириона на поверхности инфицируемой клетки. Адсорбция происходит путём взаимодействия вириона со специфическими клеточными рецепторами. За распознавание рецепторов ответственны белки, входящие в состав капсида либо суперкапсида. Таким образом, понятие «тропизм вирусов» объясняется специфическим взаимодействием вирусных белков с поверхностными рецепторами инфицируемой клетки. Например, полиовирус проникает в клетки центральной нервной системы (ЦНС) и желудочно-кишечного тракта (ЖКТ) и размножается в них, так как у человека и приматов только эти клетки имеют рецепторы к белкам полиовирусов,

Процесс адсорбции не зависит от температуры (то есть не требует энергетических затрат) и протекает в две фазы; фаза ионного притяжения обусловлена неспецифическим взаимодействием, фаза прикрепления происходит благодаря структурной гомологии либо комплемен-тарности взаимодействующих молекул.

Количество инфекционных вирусных частиц, адсорбированных па клетке, определяет термин «множественность заражений » (инфицирования). Обычно животная клетка содержит около 50 000 рецепторов, и её заражение носит множественный характер, то есть на клетке может сорбироваться большое количество вирионов. Тем не менее инфицированная вирусом клетка обычно толерантна к повторному заражению гомологичным вирусом.