Принципы построения локальных вычислительных сетей. Кольцевая сеть

абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента : центральный и один из периферийных. Чаще всего для их соединения используется две линии связи , каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов .

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийным абонентом , может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов . Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6 , носит название активной или истинной звезды. Существует также топология , называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер , то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи .


Рис. 1.11.

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии , так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией .

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом , однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN ).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях , расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Топология кольцо

Кольцо - это топология , в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи , как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов .

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI ). Кольцо в этом отношении существенно превосходит любые другие топологии .

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент , который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен .

Кольцевая сеть — это сеть которая состоит из двух или более сетевых устройств, которые соединены друг с другом физически или логически, так что они образуют цепочку устройств, причем последнее устройство в цепи подключается к первому устройству. Кольцевая сеть типично спроектирована как топологии одиночного-кольца или двойного-кольца. В разработке также находятся технологии с несколькими кольцами, включающими два или более параллельных кольца.
Сети обычно характеризуются двумя способами: физически и логически. Термин “физическая топология” описывает способ устройства быть физически подключенными вместе, поэтому физическая топология сети кольцо и физические устройства соединены вместе, чтобы сформировать кольцо. Логическое представление топологии связано с потоками информации. В логической перспективе, кольцевая топология сети может иметь устройства физически подключенными вместе, как топология сети звезда, сеть для передачи данных или древовидная сеть, но информация течет от устройства к устройству, как если бы они были связаны в физическом кольце. Например, сеть может быть физически организована как сеть звезда, но информация может передаваться от устройства к устройству, как если бы это была кольцевая сеть.

Одним из основных недостатков одиночной кольцевой сети является то, что разрыв в любом месте кольца может привести к полному сбою потока информации. Для того чтобы помочь предотвратить нарушения этой природы, создают второе параллельное counter-rotating кольцо которое можно добавить и которое посылает информацию в противоположном направлении. Этот тип избыточной сети называется двойной кольцевой сетью. Если одно из колец в двойной кольцевой сети страдает от повреждением, информация всё ещё может достигнуть всех устройств с помощью неповрежденного альтернативного пути.

Второй недостаток кольцевых сетей заключается в том, что информация перемещается медленнее, потому что данные должны проходить через каждое устройство, когда она пробивается через сеть. Несмотря на это ограничение, кольцевая топология всё ещё существует в волоконно-оптических сетях, таких как волоконно распределенном интерфейсе данных (сети fddi) сетей, синхронных оптических сетях (сонет) и сетях синхронной цифровой иерархии (СЦИ). Когда эти высокоскоростные сети включают физическую двойную кольцевую топологию, они тем самым извлекают выгоду от резервирования, обеспеченного этим типом топологии.

Ring networks впервые стала популярной в 1980-х годах, когда топологии логической кольцевой сети были использованы в технологии token ring. Ограничения, присущие кольцевой сети, наряду с проблемами совместимости между маркерным кольцом и другими протоколами, в значительной степени были заменены новыми транспортными методами передачи данных, такими как локальные сети. Несмотря на то, что Ethernet всё чаще продолжает вытеснять протоколы, используемые в волоконно-оптических кольцевых сетях, использование кольцевой сети и разработка для высокоскоростной передачи данных продолжаются.

Водопроводная сеть представляет собой совокупность трубопроводов, по которым вода транспортируется потребителям. Основное назначение водо­проводной сети - подавать потребителям воду в требуемом количестве, хоро­шего качества и с необходимым напором. Обычно водопроводная система на­ряду с подачей воды для хозяйственных нужд обеспечивает ещё и нужды по­жаротушения. Проектируют водопроводную сеть с учётом совместной работы насосных станций, водонапорной башни и других элементов системы водо­снабжения.

Трассировка водопроводной сети заключается в придании ей опреде­лённого геометрического начертания. Она зависит от: конфигурации населён­ного пункта, расположения улиц, кварталов, общественных и производствен­ных зданий, расположения источника водоснабжения и многих других факто­ров.

Н.С. - насосная станция

Б - водонапорная башня

Рисунок - Схема начертания кольцевой водопроводной сети

Кольцевую сеть применяют в населённых пунктах близ­ких по очертанию к квадрату или прямоугольнику. В этих сетях трубопрово­ды образуют один или несколько замкнутых контуров - колец. Благодаря кольцеванию каждый участок получает питание от двух или нескольких ли­ний, что значительно повышает надёжность работы сети и создаёт ряд других преимуществ. Кольцевые сети обеспечивают бесперебойную подачу воды да­же при авариях на отдельных участках: при выключении аварийного участка подача воды к другим линиям сети не прекращается. Они меньше подвержены авариям, т.к. в них не возникает сильных гидравлических ударов. При быст­ром закрытии какого-либо трубопровода поступавшая к нему вода устремля­ется в другие линии сети и действие гидравлического удара уменьшается. Во­да в сети не замерзает, т.к. даже при небольшом водоразборе она циркулирует по всем линиям, неся с собой тепло. Кольцевые сети обычно несколько длин­нее тупиковых, но устроены из труб меньшего диаметра. Стоимость кольце­вых сетей немного выше тупиковых. Благодаря высокой надёжности они на­ходят широкое применение в водоснабжении. Они полностью отвечают требованиям противопожарного водоснабжения. После того, как выполнен расчёт водопотребления населённого пункта, производится трассировка кольцевой разводящей сети. С этой целью на территории объекта водоснабжения (плане посёлка) вычерчивают трубопроводы, соединяют их концы и начала, образовывая замкнутые контуры-кольца, и подводят воду к крупным объектам. Далее на кольцевой сети намечаются узлы и участки. Каждый участок сети анализируется и замеряется. Все результаты сводятся в таблицу. Следует заметить, что особенностью кольцевых сетей является то, что раздача воды водопотребителям происходит практически на всех её участках, а это значит, что все они являются участками с путевыми расходами. Исклю­чение составляют лишь те участки, где явно нецелесообразно разбирать воду. Это могут быть участки, подводящие воду к крупным водопотребителям (на­пример, бане, больнице, МТФ и пр.).

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Топология сети — это физический и логический способ объединения группы компьютеров в единую сеть. Наиболее распространённая -"шина", "звезда", "кольцо". Каждая из них имеет свои преимущества и недостатки и используется в зависимости от ситуации. Все они так или иначе применяются в построении современных локальных сетей. Давайте рассмотрим их ключевые особенности, узнаем сильные и слабые стороны каждой из них.

"Шина"

Этот вид организации локальной сети предусматривает использование единственного кабеля, при помощи которого объединяются между собой все использующиеся рабочие станции. Каждая из них передаёт сигнал всем компьютерам, подключённым к линии, но принимает данные лишь тот, адрес которого обозначен в пакете. Остальные просто игнорируют полученную информацию.

В топологии "общая шина" обязательно используются терминаторы, которые находятся на концах основного кабеля и глушат сигналы, попадающие к ним, дабы избежать их отражения. Без этих устройств в такой сети неизбежно возникали бы коллизии, из-за которых нормальная работа была бы невозможна. Конечно, коллизии всё равно возникают, но благодаря терминаторам их количество минимально. Если это всё-таки произошло, то станция просто отправляет пакет заново через случайный промежуток времени, определяемый алгоритмом.

Достоинства топологии "шина"

Данная организация сети имеет ряд преимуществ перед другими способами. Среди них — низкая стоимость конструкции и простота её создания. Организовать такую локальную сеть достаточно просто, нужно лишь протянуть "общую шину" и подключить к ней компьютеры через специальные разъёмы. Эта топология предполагает малый расход так как используются лишь небольшие его отрезки, соединяющие "шину" с рабочей станцией.

Имеет смысл использовать "общую шину" в небольших офисах или, наоборот, на магистралях, соединяющих несколько сетей вместе. Одно из преимуществ этой топологии в том, что при поломке одной из рабочих станций работоспособность сети не нарушается. Остальные ее участники могут продолжить свою работу как ни в чём не бывало. При подключении нового компьютера нет нужды останавливать работу сети, что также является бесспорным плюсом "общей шины".

Недостатки "общей шины"

Недостатки этой топологии обусловлены теми же причинами, что и её достоинства. Например, соединение всех компьютеров одним кабелем существенно снижает надёжность сети. Обрыв "шины" в любом месте положит конец всей системе. При этом в сетях с такой топологией очень трудно диагностировать неисправность. Ещё один минус "шины" состоит в её низкой производительности. Все данные такой сети проходят по одному кабелю. Это делает невозможным работу на больших скоростях.

Ещё один камень в огород "общей шины" — зависимость скорости работы от количества компьютеров в сети. Так как рабочим станциям приходится общаться по одному каналу связи, то чем больше компьютеров будет подключено к такой сети, тем ниже будет скорость её работы. То есть "общая шина" хорошо подходит для небольшого количества узлов, которым не требуется серьёзный уровень безопасности. Ведь с безопасностью у этого вида топологии также есть проблемы. Дело в том, что каждый клиент в подобной сети имеет доступ к информации остальных компьютеров.

Топология "кольцо"

Этот вид организации локальной сети устроен так, что каждый компьютер в нём соединён со следующим, пока цепь не замкнётся, образовав кольцо. Сигнал в такой сети проходит в одну сторону, от одного компьютера к другому, пока не достигнет адресата. Для определения рабочей станции, которая передаёт информацию в данный момент, используется маркер. Компьютеры передают его по очереди до тех пор, пока он не попадёт к узлу, желающему отправить данные. Тогда он отправляет информацию пакетами, один за другим, не дожидаясь подтверждения о доставке. Рабочая станция, получающая данные, в свою очередь, отправляет отчёт о получении пакета. После получения подтверждения о доставке компьютер отправляет маркер дальше по кругу, чтобы кто-то другой смог им воспользоваться. Таким незатейливым образом организована топология сети "кольцо". У такой конструкции есть как достоинства, так и недостатки.

Плюсы "кольца"

Топологии - в её простоте. Такую сеть очень просто реализовать, и она не требует серьёзных расходов на кабель. Сетевой шнур нужен лишь для прокладки от одного компьютера к другому, дополнительные затраты отсутствуют. Также в "кольце" можно добиться высокой скорости передачи данных, ведь для отправки пакета не нужно дожидаться отчёта о доставке.

Ещё один плюс сетей с подобной организацией — они могут иметь большую протяжённость. При этом нет нужды усиливать сигнал с помощью дополнительного оборудования, так как каждая рабочая станция обновляет и восстанавливает данные сама. Но за простотой и дешевизной этой топологии скрываются недостатки, сделавшие её применение очень ограниченным.

Топология "кольцо": недостатки

При организации сети такого типа нужно помнить, что её надёжность оставляет желать лучшего. Причина этого в том, что работоспособность ее зависит от каждого компьютера, который в неё входит. То есть, если одна из рабочих станций ломается, то вся сеть прекращает функционировать. Топология "кольцо" также предполагает, что для подключения нового компьютера нужно полностью остановить работу сети, а это очень неудобно как для администратора, так и для пользователей.

Ещё одна причина не использовать эту топологию — низкая производительность при большом количестве рабочих станций. Так как данные постоянно идут по кругу, то каждый новый клиент в сети замедляет её работу. Более того, один старый компьютер способен сделать сеть типа "кольцо" невероятно медленной, независимо от скорости остальных членов кольца. Всё это существенно ограничивает применение этой топологии в современных сетях, но в некоторых случаях её использование оправдано.

"Звезда"

Наверное, самая распространённая топология сети — "звезда". "Кольцо", рассмотренное выше, используется гораздо реже, да и "общая шина" тоже. В сети с топологией "звезда" рабочие станции напрямую подключены к концентратору. Этот важный элемент сети может быть как активным, восстанавливающим сигнал, так и пассивным, который просто обеспечивает физическое соединение кабеля. Сервер также подключён к концентратору, как и другие компьютеры, что делает связь между ними предельно простой.

Обычно размер сети с топологией "звезда" ограничен только количеством портов на хабе, но теоретически их не может быть более 1024, хотя трудно представить концентратор с таким количеством портов. Через хаб проходит весь трафик в сети типа "звезда", так что от этого устройства целиком и полностью зависит надёжность и работоспособность всей системы.

Плюсы топологии "звезда"

Если вам нужно построить быструю и надёжную сеть, то отличный выбор — топология "звезда". "Кольцо" или "общая шина" также могут быть использованы на некоторых участках сети. Плюсы "звезды" - в её надёжности и простоте. К каждой рабочей станции идёт отдельный сетевой кабель, что весьма удобно и практично. Благодаря этому в такой сети очень просто находить и исправлять неполадки, да и её обслуживание отнимает куда меньше времени и нервов. При подключении новых компьютеров к сети типа "звезда" она сохраняет свою работоспособность в отличие от других вариантов построения. Например, топология "кольцо" не может похвастать подобной гибкостью.

Скорость в сети с топологией "звезда" ограничена лишь пропускной способностью кабеля и портов концентратора. Также в такой сети отсутствуют столкновения передаваемой информации. Каждый компьютер передаёт свои данные через отдельный кабель. Если нужна большая сеть, то можно объединить несколько сетей с топологией "звезда". Несмотря на все свои достоинства, этот тип организации сетей имеет и недостатки.

Недостатки "звезды"

Если в сети с топологией "звезда" сломается концентратор, то она прекратит свою работу. Такая зависимость от одного элемента системы существенно снижает надёжность сети. Ещё одна проблема — дороговизна установки. Для каждой рабочей станции выделен собственный кабель, который требуется провести и закрепить. Так что к цене кабеля можно прибавить стоимость коммуникаций и коробов для него, и получится, что "звезда" обойдётся гораздо дороже, чем, например, топология "кольцо".

Ещё один недостаток топологии "звезда" — максимальная длина кабеля до рабочей станции. Она не должна превышать 100 м, в противном случае сигнал будет ослабевать и искажаться. Следовательно, радиус покрытия такой сети не превышает 200х200 метров. Для дальнейшего расширения нужно будет добавлять в сеть дополнительные концентраторы.

Комбинирование топологий

Итак, вы ознакомились со всеми вариантами, но так и не решили, какая вам нужна топология — "шина", "звезда", "кольцо"? Это неудивительно, так как современные сети зачастую требуют комбинирования топологий. Например, несколько серверов могут быть объединены в "общую шину", но от каждого из них будет разветвляться сеть с топологией "звезда". В зависимости от решаемой задачи устройство локальной сети может быть самым разнообразным. Можно встретить такие варианты, в которых каждый компьютер соединён с каждым, хотя это большая редкость. Ещё один интересный вариант — два "кольца", имеющие один общий компьютер.

На предприятиях часто можно встретить разные топологии в рамках одного здания. Вся сеть может быть построена в виде "звезды", но в отдельных кабинетах организована топология "кольцо" или "общая шина". В крупных сетях совмещение разных видов нередко является единственным вариантом решения поставленной задачи. Ведь, в конце концов, неважно, что у вас — "звезда", "кольцо", "шина". Топология сети нужна лишь для решения практических задач. Ваша сеть работает стабильно и решает все возложенные на неё задачи? Тогда неважно, какая топология использовалась при её создании.