Приведите примеры кодирования и декодирования информации. Кодирование и декодирование информации. Как происходит декодирование

Эксплуатация электронно-вычислительной техники для обработки данных стала важным этапом в процессе совершенствования систем управления и планирования. Но такой метод сбора и обработки информации несколько отличается от привычного, поэтому требует преобразования в систему символов, понятных компьютеру.

Что такое кодирование информации?

Кодирование данных - это обязательный этап в процессе сбора и обработки информации.

Как правило, под кодом подразумевают сочетание знаков, которое соответствует передаваемым данным или некоторым их качественным характеристикам. А кодирование - это процесс составления зашифрованной комбинации в виде списка сокращений или специальных символов, которые полностью передают изначальный смысл послания. Кодирование еще иногда называют шифрованием, но стоит знать, что последняя процедура предполагает защиту данных от взлома и прочтения третьими лицами.

Цель кодирования заключается в представлении сведений в удобном и лаконичном формате для упрощения их передачи и обработки на вычислительных устройствах. Компьютеры оперируют лишь информацией определенной формы, поэтому так важно не забывать об этом во избежание проблем. Принципиальная схема обработки данных включает в себя поиск, сортировку и упорядочивание, а кодирование в ней встречается на этапе ввода сведений в виде кода.

Что такое декодирование информации?

Вопрос о том, что такое кодирование и декодирование, может возникнуть у пользователя ПК по различным причинам, но в любом случае важно донести корректную информацию, которая позволит юзеру успешно продвигаться в потоке информационных технологий дальше. Как вы понимаете, после процесса обработки данных получается выходной код. Если такой фрагмент расшифровать, то образуется исходная информация. То есть декодирование - это процесс, обратный шифрованию.

Если во время кодирования данные приобретают вид символьных сигналов, которые полностью соответствуют передаваемому объекту, то при декодировании из кода изымается передаваемая информация или некоторые ее характеристики.

Получателей закодированных сообщений может быть несколько, но очень важно, чтобы сведения попали в руки именно к ним и не были раскрыты раньше третьими лицами. Поэтому стоит изучить процессы кодирования и декодирования информации. Именно они помогают обмениваться конфиденциальными сведениями между группой собеседников.

Кодирование и декодирование текстовой информации

При нажатии на клавиатурную клавишу компьютер получает сигнал в виде двоичного числа, расшифровку которого можно найти в кодовой таблице - внутреннем представлении знаков в ПК. Стандартом во всем мире считают таблицу ASCII.

Однако мало знать, что такое кодирование и декодирование, необходимо еще понимать, как располагаются данные в компьютере. К примеру, для хранения одного символа двоичного кода электронно-вычислительная машина выделяет 1 байт, то есть 8 бит. Эта ячейка может принимать только два значения: 0 и 1. Получается, что один байт позволяет зашифровать 256 разных символов, ведь именно такое количество комбинаций можно составить. Эти сочетания и являются ключевой частью таблицы ASCII. К примеру, буква S кодируется как 01010011. Когда вы нажимаете ее на клавиатуре, происходит кодирование и декодирование данных, и мы получаем ожидаемый результат на экране.

Половина таблицы стандартов ASCII содержит коды цифр, управляющих символов и латинских букв. Другая ее часть заполняется национальными знаками, псевдографическими знаками и символами, которые не имеют отношения к математике. Совершенно ясно, что в различных странах эта часть таблицы будет отличаться. Цифры при вводе также преобразовываются в двоичную систему вычисления согласно стандартной сводке.

Кодирование чисел

Подобный метод кодирования точек изображений применяется и в полиграфической отрасли. Только здесь принято задействовать четвертый цвет - черный. По этой причине полиграфическую систему преобразования обозначают аббревиатурой CMYK. Эта система для представления изображений использует целых тридцать два двоичных разряда.

Способы кодирования и декодирования информации предполагают использование различных технологий, в зависимости от типа вводимых данных. К примеру, графических изображений шестнадцатиразрядными двоичными кодами называется High Color. Эта технология дает возможность передавать на экран целых двести пятьдесят шесть оттенков. Уменьшая количество задействованных двоичных разрядов, применяемых для шифрования точек графического изображения, вы автоматически уменьшаете объем, необходимый для временного хранения информации. Такой метод кодирования данных принято называть индексным.

Кодирование звуковой информации

Теперь, когда мы рассмотрели, что такое кодирование и декодирование, и методы, лежащие в основе этого процесса, стоит остановиться на таком вопросе, как кодирование звуковых данных.

Звуковую информацию можно представить в виде элементарных единиц и пауз между каждой их парой. Каждый сигнал преобразовывается и сохраняется в памяти компьютера. Звуки выводятся с помощью который используется хранящиеся в памяти ПК зашифрованные комбинации.

Что касается человеческой речи, то ее гораздо сложнее закодировать, ведь она отличается многообразием оттенков, и компьютеру приходится сравнивать каждое словосочетание с эталоном, предварительно занесенным в его память. Распознавание произойдет лишь в случае, когда сказанное слово будет найдено в словаре.

Кодирование информации в двоичном коде

Существуют различные методики реализации такой процедуры, как кодирование числовой, текстовой и графической информации. Декодирование данных обычно происходит по обратной технологии.

При кодировании чисел даже учитывается цель, с которой цифра была введена в систему: для арифметических вычислений или просто для вывода. Все данные, кодируемые в двоичной системе, шифруются с помощью единиц и ноликов. Эти символы еще называют битами. Этот метод кодировки является наиболее популярным, ведь его легче всего организовать в технологическом плане: присутствие сигнала - 1, отсутствие - 0. У двоичного шифрования есть лишь один недостаток - это длина комбинаций из символов. Но с технической точки зрения легче орудовать кучей простых, однотипных компонентов, чем малым числом более сложных.

Преимущества двоичного кодирования

  • Такая форма представления информации подходит для различных ее видов.
  • При передаче данных не возникает никаких ошибок.
  • ПК намного легче обрабатывать данные, закодированные таким способом.
  • Требуются устройства с двумя состояниями.

Недостатки двоичного кодирования

  • Большая длина кодов, которая несколько замедляет их обработку.
  • Сложность восприятия двоичных комбинаций человеком без специального образования или подготовки.

Заключение

Ознакомившись с этой статьей, вы смогли узнать, что такое кодирование и декодирование и для чего его используют. Можно сделать вывод, что используемые методики преобразования данных полностью зависят от типа информации. Это может быть не только текст, а еще и числа, изображения и звук.

Кодирование различной информации позволяет унифицировать форму ее представления, то есть сделать однотипной, что значительно ускоряет процессы обработки и автоматизации данных при дальнейшем использовании.

В электронно-вычислительных машинах чаще всего используют принципы стандартного двоичного кодирования, которое исходную форму представления информации преобразовывает в формат, более удобный для хранения и дальнейшей обработки. При декодировании все процессы происходят в обратном порядке.

А9 Тема : Кодирование и декодирование информации.

Что нужно знать :

· кодирование – это перевод информации с одного языка на другой (запись в другой системе символов,
в другом алфавите)

· обычно кодированием называют перевод информации с «человеческого» языка на формальный, например, в двоичный код, а декодированием – обратный переход

· один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия)

· кодирование может быть равномерное и неравномерное ;
при равномерном кодировании все символы кодируются кодами равной длины;
при неравномерном кодировании разные символы могут кодироваться кодами разной длины, это затрудняет декодирование

· закодированное сообщение можно однозначно декодировать с начала , если выполняется условие Фано : никакое кодовое слово не является началом другого кодового слова;

· закодированное сообщение можно однозначно декодировать с конца , если выполняется обратное условие Фано : никакое кодовое слово не является окончанием другого кодового слова;

· условие Фано – это достаточное, но не необходимое условие однозначного декодирования.

Пример задания

По каналу связи передаются сообщения, содержащие только 4 буквы: Е, Н, О, Т. Для кодирования букв Е, Н, О используются 5-битовые кодовые слова: Е - 00000, Н - 00111, О - 11011. Для этого набора кодовых слов выполнено такое свойство: любые два слова из набора отличаются не менее чем в трёх позициях. Это свойство важно для расшифровки сообщений при наличии помех. Какое из перечисленных ниже кодовых слов можно использовать для буквы Т, чтобы указанное свойство выполнялось для всех
четырёх кодовых слов?

1) 1100не подходит ни одно из указанных выше слов

Решение :

1) код, рассмотренный в условии задачи, относится к помехоустойчивым кодам, которые позволяют обнаружить и исправить определенное количество ошибок, вызванных помехами при передаче данных;

1) количество позиций, в которых отличаются два кодовых слова одинаковой длины, называется расстоянием Хэмминга

2) код, в котором расстояние Хэмминга между каждой парой кодовых слов равно d , позволяет обнаружить до d -1 ошибок; для исправления r ошибок требуется выполнение условия

d ≥ 2r + 1

поэтому код с d = 3 позволяет обнаружить одну или две ошибки, и исправить одну ошибку.

3) легко проверить, что для заданного кода (Е - 00000, Н - 00111, О - 11011) расстояние Хэмминга равно 3; в таблице выделены отличающиеся биты, их по три в парах Е-Н и Н-О и четыре
в паре Е-О:

Е – 00000 Е – 00000 Н – 00111

Н – 00111 О – 11011 О – 11011

4) теперь проверяем расстояние между известными кодами и вариантами ответа; для первого ответа 11111 получаем минимальное расстояние 1 (в паре О-Т), этот вариант не подходит:

Т - 11111 Т - 11111 Т - 11111

5) для второго ответа 11100 получаем минимальное расстояние 3 (в парах Е-Т и О-Т):

Е – 00000 Н – 00111 О – 11011

Т - 11100 Т - 11100 Т - 11100

6) для третьего ответа 00011 получаем минимальное расстояние 1 (в паре Н-Т) , этот вариант не подходит:

Е – 00000 Н – 00111 О – 11011

Т - 00011 Т - 00011 Т - 00011

7) таким образом, расстояние Хэмминга, равное 3, сохраняется только для ответа 2 Ответ: 2.

Ещё пример задания:

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–00, Б–010, В–011, Г–101, Д–111. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.

1) для буквы Б –это невозможно

3) для буквы В –для буквы Г – 01

Решение (1 способ, проверка условий Фано) :

8) для однозначного декодирования достаточно, чтобы выполнялось условие Фано или обратное условие Фано;

9) проверяем последовательно варианты 1, 3 и 4; если ни один из них не подойдет, придется выбрать вариант 2 («это невозможно»);

10) проверяем вариант 1: А–00, Б–01, В–011, Г–101, Д–111.

« (код буквы Б совпадает с началом кода буквы В);

«обратное» условие Фано не выполняется (код буквы Б совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

11) проверяем вариант 3: А–00, Б–010, В–01, Г–101, Д–111.

«прямое» условие Фано не выполняется (код буквы В совпадает с началом кода буквы Б);

«обратное» условие Фано не выполняется (код буквы В совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

12) проверяем вариант 4: А–00, Б–010, В–011, Г–01, Д–111.

«прямое» условие Фано не выполняется (код буквы Г совпадает с началом кодов букв Б и В);
но «обратное» условие Фано выполняется (код буквы Г не совпадает с окончанием кодов остальных буквы); поэтому этот вариант подходит; правильный ответ – 4.

Пример задания: демо_12

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Использовали код: А–1, Б–000, В–001, Г–011 .
Укажите, каким кодовым словом должна быть закодирована буква Д. Длина этого кодового слова должна быть наименьшей из всех возможных. Код должен удовлетворять свойству однозначного декодирования.

Решение :

13) заметим, что для известной части кода выполняется условие Фано – никакое кодовое слово не является началом другого кодового слова

14) если Д = 00, такая кодовая цепочка совпадает с началом Б = 000 и В = 001 000000: это может быть ДДД или ББ ; поэтому первый вариант не подходит

15) если Д = 01 , такая кодовая цепочка совпадает с началом Г = 011 , невозможно однозначно раскодировать цепочку 011: это может быть ДА или Г ; поэтому второй вариант тоже не подходит

16) если Д = 11 , условие Фано тоже нарушено: кодовое слово А = 1 совпадает с началом кода буквы Д, невозможно однозначно раскодировать цепочку 111: это может быть ДА или ААА ; третий вариант
не подходит

17) для четвертого варианта, Д = 010, условие Фано не нарушено; правильный ответ 4 .

Еще пример задания:

Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=0, Б=10, В=110. Как нужно закодировать
букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

Решение (вариант 1, метод подбора) :

1) рассмотрим все варианты в порядке увеличения длины кода буквы Г

2) начнем с Г=1; при этом получается, что сообщение «10» может быть раскодировано двояко:
как ГА или Б, поэтому этот вариант не подходит

3) следующий по длине вариант Г=11 ; в этом случае сообщение «110» может быть раскодировано
как ГА или В, поэтому этот вариант тоже не подходит 4)третий вариант, Г=111 , дает однозначное раскодирование во всех сочетаниях букв, поэтому… ответ – 3.

Еще пример задания:

Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11, соответственно). Если таким способом закодировать последовательность символов БАВГ и записать результат шестнадцатеричным кодом, то получится

Решение :

18) из условия коды букв такие: A – 00, Б –01, В – 10 и Г – 11, код равномерный

19) последовательность БАВГ кодируется так:= 1001011

20) разобьем такую запись на тетрады справа налево и каждую тетраду переведем в шестнадцатеричную систему (то есть, сначала в десятичную, а потом заменим все числа от 10 до 15 на буквы A, B, C, D, E, F); получаем 1001011 = 0 = 4B16 Правильный ответ – 1.

Еще пример задания:

Черно-белое растровое изображение кодируется построчно, начиная с левого верхнего угла и заканчивая в правом нижнем углу. При кодировании 1 обозначает черный цвет, а 0 – белый.

Для компактности результат записали в шестнадцатеричной системе счисления. Выберите правильную запись кода.

1) BD9AA5 2) BDA9B5 3) BDA9D5 4) DB9DAB

Решение :

1) «вытянем» растровое изображение в цепочку: сначала первая (верхняя) строка, потом – вторая, и т. д.:

1 строка

2 строка

3 строка

4 строка

2) в этой полоске 24 ячейки, черные заполним единицами, а белые – нулями:

1

1

1

1

1

1

1

1

1

1

1 строка

2 строка

3 строка

4 строка

3) поскольку каждая цифра в шестнадцатеричной системе раскладывается ровно в 4 двоичных цифры, разобьем полоску на тетрады – группы из четырех ячеек (в данном случае все равно, откуда начинать разбивку, поскольку в полоске целое число тетрад – 6):

1

1

1

1

1

1

1

1

1

1

4) переводя тетрады в шестнадцатеричную систему, получаем последовательно цифры B (11), D(13), A(10), 9, D(13) и 5, то есть, цепочку BDA9 D5 Правильный ответ – 3.

Еще пример задания:

Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23 , то получим последовательность 0010 1 00110 ). Определите, какое число передавалось по каналу в виде 0100011 ?

Решение :

1) сначала разберемся, как закодированы числа в примере; очевидно, что используется код равномерной длины; поскольку 2 знака кодируются 10 двоичными разрядами (битами), на каждую цифру отводится 5 бит, то есть 2 → 00101 и 3 → 00110

2) как следует из условия, четыре первых бита в каждой последовательности – это двоичный код цифры, а пятый бит (бит четности) используется для проверки и рассчитывается как «сумма по модулю два», то есть остаток от деления суммы битов на 2; тогда

2 = 00102, бит четности (0 + 0 + 1 + 0) mod 2 = 1

3 = 00112, бит четности (0 + 0 + 1 + 1) mod 2 = 0

3) но бит четности нам совсем не нужен , важно другое: пятый бит в каждой пятерке можно отбросить !

4) разобъем заданную последовательность на группы по 5 бит в каждой:

01010, 10010, 01111, 00011.

5) отбросим пятый (последний) бит в каждой группе: 0101, 1001, 0111, 0001.
это и есть двоичные коды передаваемых чисел: 01012 = 5, 10012 = 9, 01112 = 7, 00012 = 1.

6) таким образом, были переданы числа 5, 9, 7, 1 или число 5971.

7) Ответ: 2.

А9 Задачи для тренировки.

№ 69 – 71

69) По каналу связи передаются сообщения, содержащие только 4 буквы: А, Б, В, Г. Для кодирования букв А, Б, В используются 5-битовые кодовые слова: А - 10000, Б - 00101, В - 01010. Для этого набора кодовых слов выполнено такое свойство: любые два слова из набора отличаются не менее чем в трёх позициях. Это свойство важно для расшифровки сообщений при наличии помех. Какое из перечисленных ниже кодовых слов можно использовать для буквы Г, чтобы указанное свойство выполнялось для всех четырёх кодовых слов?

1) 0110не подходит ни одно из указанных выше слов

70) (http://ege. *****) Для передачи помехоустойчивых сообщений в алфавите, который содержит 16 различных символов, используется равномерный двоичный код. Этот код удовлетворяет следующему свойству: в любом кодовом слове содержится четное количество единиц (возможно, ни одной). Какую наименьшую длину может иметь кодовое слово?

71) По каналу связи передаются сообщения, содержащие только 5 букв А, И, К, О, Т. Для кодирования букв используется неравномерный двоичный код с такими кодовыми словами:

А-0, И-00, К-10, О-110, Т-111.

Среди приведённых ниже слов укажите такое, код которого можно декодировать только одним способом. Если таких слов несколько, укажите первое по алфавиту.

1) КАА 2) ИКОТА 3) КОТ 4) ни одно из сообщений не подходит

1. Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11 соответственно). Если таким способом закодировать последовательность символов ГБВА и записать результат шестнадцатеричным кодом, то получится:

1) 13DBCA16 3) D

2. Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв - из двух
бит, для некоторых - из трех). Эти коды представлены в таблице:

Определите, какой набор букв закодирован двоичной строкой

1) baade 2) badde 3) bacde 4) bacdb

3. Для кодирования сообщения, состоящего только из букв A, B, C, D и E, используется
неравномерный по длине двоичный код:

Какое (только одно!) из четырех полученных сообщений было передано без ошибок
и может быть раскодировано:

4. Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=0, Б=100, В=101. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

5. Черно-белое растровое изображение кодируется построчно, начиная с левого верхнего угла и заканчивая в правом нижнем углу. При кодировании 1 обозначает черный цвет, а 0 – белый.

Для компактности результат записали в восьмеричной системе счисления. Выберите правильную запись кода.1412

6. Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23, то получим последовательность). Определите, какое число передавалось по каналу в виде?

7. Для кодирования букв О, Ч, Б, А, К используются двоичные коды чисел 0, 1, 2, 3 и 4 соответственно (с сохранением одного незначащего нуля в случае одноразрядного представления). Если таким способом закодировать последовательность символов
КАБАЧОК и записать результат в шестнадцатеричном коде, то получится:

1) 5434DA4 3) ABCD

8. Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=01, Б=1, В=001. Как нужно закодировать
букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

9. Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=0, Б=100, В=110. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

Здравствуйте! Меня зовут Александр Георгиевич! Я работаю репетитором по , и уже на протяжении 10 лет.

Ключевые направления моей преподавательской деятельности:

    Подготовка школьников к успешной сдаче и по информатике и математике.

    Подготовка студентов по различным .

    Выполнение на заказ всевозможных .

    Ведение образовательного YouTube-канала , на который я регулярно выкладываю мультимедийные видеоматериалы.

Если у вас есть непонимания, что такое « Декодирование информации » и что под этим процессом понимается, то рекомендую вам записаться на . На своих частных занятиях я со своими учениками помимо знакомства с теоретической частью решаю колоссальное количество различных тематических примеров.

В отличие от большинства других репетиторов я предлагаю своим клиентам абсолютно любые взаимодействия:

Информация, свойства информации, кодирование информации

Прежде чем переходить к анализу сведений, связанных с декодированием информации , вам в обязательном порядке стоит освежить в памяти такие темы, как « » и « ».

С таким понятием как «Декодирование информации » неразрывно связано другое – « ». Эти процессы являются антагонистами, то есть противопоставляются друг другу. Процесс декодирования невозможен без начального процесса кодирования какой-либо информации.

Если бы не существовало кодирования информации, то тогда бы не требовалось и проводить декодирование.

Рассмотрим два конкретных примера. Первый – бытовой, второй – промышленный.

Вы хотите передать другу текстовое email-сообщение, но не в обычном русскоязычном варианте, а специальном, чтобы никто не смог его правильно прочитать. Следовательно, вы задумываетесь о том, каким образом его можно зашифровать, закодировать. Не долго думая, вы выбираете следующий способ кодирования.

В чем его суть: каждую русскую букву передаваемого сообщения вы заменяется на букву, стоящую в алфавите через 5 позиций дальше. То есть буква « а» становится буквой «е», буква «б» становится буквой «ё» и так далее. По факту вы производите сдвиг позиции буквы на 5 единиц вперед.

Да, подобное кодирование крайне неустойчивое и легко «взламывается» злоумышленниками, но большинство людей не смогу раскодировать подобное сообщение за разумное время, так как не догадаются об алгоритме шифрования.

Когда ваш друг получает от вас закодированное текстовое сообщение он должен его декодировать, то есть воспользоваться алгоритмом вашего кодирования, но в «обратную сторону». Чтобы декодировать информацию , представленную таким информационным сообщением, ему следует произвести сдвиг каждой буквы на 5 позиций назад.

То есть буква «ё» станет буквой «б», а буква «е» станет буквой «а» и так далее. Это пример простейшего, тривиального кодирования и декодирования информации .

Пример промышленного "банковского" кодирования и декодирования информации

Давайте рассмотрим более сложный вариант шифрования информации. Допустим банковский служащий планирует передать в другую страну документ, содержащий информацию о банковских счетах клиентов банка. Передавать подобное сообщение в незащищенном варианте абсолютно опасно.

Существует большое количество устойчивых алгоритмов кодирования информации, я лишь вкратце поясню суть. Сначала вычисляется контрольная сумма файла (под файлом можно понимать передаваемый документ), затем файл разбивается на несколько пакетов.

Для каждого пакета также вычисляется контрольная сумма. Информация внутри каждого пакета кодируется одним из сложнейших современных алгоритмов шифрования. После этого начинается передача пакетов адресату. Адресат, получая пакеты, отправляет отправителю контрольные суммы.

Если контрольные суммы пакетов у отправителя и адресата совпадают, то все в порядке, несанкционированного доступа к этим пакетам не проводилось. Когда все пакеты переданы, они комплектуются в единый файл, происходит этап декодирования информации .

Разная информация кодируется по-разному

Также вам нужно понимать, что разные виды информации проходят различную обработку при декодировании. Под разными видами информации следует понимать

Остались вопросы? Звоните и записывайтесь на первый урок!

Если у вас остались вопросы, касающиеся декодирования информации , то звоните мне на мобильный телефон и записывайтесь на индивидуальные уроки по информатике и ИКТ. Я смогу вам пояснить абсолютно любой момент из данной темы, а также продемонстрирую на примерах, как правильно проводить декодирование «сложной» информации.

Своим потенциальным клиентам я предлагаю финансового взаимодействия, поэтому даже самый взыскательные клиент сумеет подобрать вариант, полностью удовлетворяющий его текущим потребностям.

Код - система условных знаков (символов) для передачи, обработки и хранения информации (сообщения).

Кодирование - процесс представления информации (сообщения) в виде кода.

Все множество символов, используемых для кодирования, называется алфавитом кодирования . Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

Научные основы кодирования были описаны К.Шенноном, который исследовал процессы передачи информации по техническим каналам связи (теория связи , теория кодирования ). При таком подходе кодирование понимается в более узком смысле: как переход от представления информации в одной символьной системе к представлению в другой символьной системе . Например, преобразование письменного русского текста в код азбуки Морзе для передачи его по телеграфной связи или радиосвязи. Такое кодирование связано с потребностью приспособить код к используемым техническим средствам работы с информацией (см. “Передача информации” ).

Декодирование - процесс обратного преобразования кода к форме исходной символьной системы , т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке.

В более широком смысле декодирование - это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение - это декодирование.

Цели кодирования и способы кодирования

Способ кодирования одного и того же сообщения может быть разным. Например, русский текст мы привыкли записывать с помощью русского алфавита. Но то же самое можно сделать, используя английский алфавит. Иногда так приходится поступать, посылая SMS по мобильному телефону, на котором нет русских букв, или отправляя электронное письмо на русском языке из-за границы, если на компьютере нет русифицированного программного обеспечения. Например, фразу: “Здравствуй, дорогой Саша!” приходится писать так: “Zdravstvui, dorogoi Sasha!”.

Существуют и другие способы кодирования речи. Например, стенография - быстрый способ записи устной речи . Ею владеют лишь немногие специально обученные люди - стенографисты. Стенографист успевает записывать текст синхронно с речью говорящего человека. В стенограмме один значок обозначал целое слово или словосочетание. Расшифровать (декодировать) стенограмму может только стенографист.

Приведенные примеры иллюстрируют следующее важное правило: для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств. Если надо записать текст в темпе речи - используем стенографию; если надо передать текст за границу - используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, - записываем его по правилам грамматики русского языка.

Еще одно важное обстоятельство: выбор способа кодирования информации может быть связан с предполагаемым способом ее обработки . Покажем это на примере представления чисел - количественной информации. Используя русский алфавит, можно записать число “тридцать пять”. Используя же алфавит арабской десятичной системы счисления, пишем: “35”. Второй способ не только короче первого, но и удобнее для выполнения вычислений. Какая запись удобнее для выполнения расчетов: “тридцать пять умножить на сто двадцать семь” или “35 х 127”? Очевидно - вторая.

Однако если важно сохранить число без искажения, то его лучше записать в текстовой форме. Например, в денежных документах часто сумму записывают в текстовой форме: “триста семьдесят пять руб.” вместо “375 руб.”. Во втором случае искажение одной цифры изменит все значение. При использовании текстовой формы даже грамматические ошибки могут не изменить смысла. Например, малограмотный человек написал: “Тристо семдесять пят руб.”. Однако смысл сохранился.

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа . В таком случае секретный текст шифруется. В давние времена шифрование называлось тайнописью. Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование - процесс обратного преобразования, при котором восстанавливается исходный текст. Шифрование - это тоже кодирование, но с засекреченным методом, известным только источнику и адресату. Методами шифрования занимается наука под названием криптография (см. “Криптография” ).

История технических способов кодирования информации

С появлением технических средств хранения и передачи информации возникли новые идеи и приемы кодирования. Первым техническим средством передачи информации на расстояние стал телеграф, изобретенный в 1837 году американцем Сэмюэлем Морзе. Телеграфное сообщение - это последовательность электрических сигналов, передаваемая от одного телеграфного аппарата по проводам к другому телеграфному аппарату. Эти технические обстоятельства привели С.Морзе к идее использования всего двух видов сигналов - короткого и длинного - для кодирования сообщения, передаваемого по линиям телеграфной связи.

Сэмюэль Финли Бриз Морзе (1791–1872), США

Такой способ кодирования получил название азбуки Морзе. В ней каждая буква алфавита кодируется последовательностью коротких сигналов (точек) и длинных сигналов (тире). Буквы отделяются друг от друга паузами - отсутствием сигналов.

Самым знаменитым телеграфным сообщением является сигнал бедствия “SOS” (S ave O ur S ouls - спасите наши души). Вот как он выглядит в коде азбуки Морзе, применяемом к английскому алфавиту:

–––

Три точки (буква S), три тире (буква О), три точки (буква S). Две паузы отделяют буквы друг от друга.

На рисунке показана азбука Морзе применительно к русскому алфавиту. Специальных знаков препинания не было. Их записывали словами: “тчк” - точка, “зпт” - запятая и т.п.

Характерной особенностью азбуки Морзе является переменная длина кода разных букв , поэтому код Морзе называют неравномерным кодом . Буквы, которые встречаются в тексте чаще, имеют более короткий код, чем редкие буквы. Например, код буквы “Е” - одна точка, а код твердого знака состоит из шести знаков. Это сделано для того, чтобы сократить длину всего сообщения. Но из-за переменной длины кода букв возникает проблема отделения букв друг от друга в тексте. Поэтому приходится для разделения использовать паузу (пропуск). Следовательно, телеграфный алфавит Морзе является троичным, т.к. в нем используется три знака: точка, тире, пропуск.

Равномерный телеграфный код был изобретен французом Жаном Морисом Бодо в конце XIX века. В нем использовалось всего два разных вида сигналов. Не важно, как их назвать: точка и тире, плюс и минус, ноль и единица. Это два отличающихся друг от друга электрических сигнала. Длина кода всех символов одинаковая и равна пяти. В таком случае не возникает проблемы отделения букв друг от друга: каждая пятерка сигналов - это знак текста. Поэтому пропуск не нужен.

Жан Морис Эмиль Бодо (1845–1903), Франция

Код Бодо - это первый в истории техники способ двоичного кодирования информации . Благодаря этой идее удалось создать буквопечатающий телеграфный аппарат, имеющий вид пишущей машинки. Нажатие на клавишу с определенной буквой вырабатывает соответствующий пятиимпульсный сигнал, который передается по линии связи. Принимающий аппарат под воздействием этого сигнала печатает ту же букву на бумажной ленте.

В современных компьютерах для кодирования текстов также применяется равномерный двоичный код (см. “Системы кодирования текста” ).

Тема кодирования информации может быть представлена в учебной программе на всех этапах изучения информатики в школе.

В пропедевтическом курсе ученикам чаще предлагаются задачи, не связанные с компьютерным кодированием данных и носящие, в некотором смысле, игровую форму. Например, на основании кодовой таблицы азбуки Морзе можно предлагать как задачи кодирования (закодировать русский текст с помощью азбуки Морзе), так и декодирования (расшифровать текст, закодированный с помощью азбуки Морзе).

Выполнение таких заданий можно интерпретировать как работу шифровальщика, предлагая различные несложные ключи шифрования. Например, буквенно-цифровой, заменяя каждую букву ее порядковым номером в алфавите. Кроме того, для полноценного кодирования текста в алфавит следует внести знаки препинания и другие символы. Предложите ученикам придумать способ для отличия строчных букв от прописных.

При выполнении таких заданий следует обратить внимание учеников на то, что необходим разделительный символ - пробел, поскольку код оказывается неравномерным : какие-то буквы шифруются одной цифрой, какие-то - двумя.

Предложите ученикам подумать о том, как можно обойтись без разделения букв в коде. Эти размышления должны привести к идее равномерного кода, в котором каждый символ кодируется двумя десятичными цифрами: А - 01, Б - 02 и т.д.

Подборки задач на кодирование и шифрование информации имеются в ряде учебных пособий для школы .

В базовом курсе информатики для основной школы тема кодирования в большей степени связывается с темой представления в компьютере различных типов данных: чисел, текстов, изображения, звука (см. “Информационные технологии ”).

В старших классах в содержании общеобразовательного или элективного курса могут быть подробнее затронуты вопросы, связанные с теорией кодирования, разработанной К.Шенноном в рамках теории информации. Здесь существует целый ряд интересных задач, понимание которых требует повышенного уровня математической и программистской подготовки учащихся. Это проблемы экономного кодирования, универсального алгоритма кодирования, кодирования с исправлением ошибок. Подробно многие из этих вопросов раскрываются в учебном пособии “Математические основы информатики” .

1. Андреева Е .В ., Босова Л .Л ., Фалина И .Н . Математические основы информатики. Элективный курс. М.: БИНОМ. Лаборатория Знаний, 2005.

2. Бешенков С .А ., Ракитина Е .А . Информатика. Систематический курс. Учебник для 10-го класса. М.: Лаборатория Базовых Знаний, 2001, 57 с.

3. Винер Н . Кибернетика, или Управление и связь в животном и машине. М.: Советское радио, 1968, 201 с.

4. Информатика. Задачник-практикум в 2 т. / Под ред. И.Г. Семакина, Е.К. Хеннера. Т. 1. М.: БИНОМ. Лаборатория Знаний, 2005.

5. Кузнецов А.А., Бешенков С.А., Ракитина Е.А., Матвеева Н.В., Милохина Л.В. Непрерывный курс информатики (концепция, система модулей, типовая программа). Информатика и образование, № 1, 2005.

6. Математический энциклопедический словарь. Раздел: “Словарь школьной информатики”. М.: Советская энциклопедия, 1988.

7. Фридланд А .Я . Информатика: процессы, системы, ресурсы. М.: БИНОМ. Лаборатория Знаний, 2003.

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

В зависимости от способа восприятия знаки делятся на:

  • зрительные (буквы и цифры, математические знаки, музыкальные ноты, дорожные знаки и др.);
  • слуховые (устная речь, звонки, сирены, гудки и др.);
  • осязательные (азбука Брайля для слепых, жесты-касания и др.);
  • обонятельные;
  • вкусовые.

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

  • иконические — их форма похожа на отображаемый объект (например, значок папки «Мой компьютер» на «Рабочем столе» компьютера);
  • символы — связь между их формой и значением устанавливается по общепринятому соглашению (например, буквы, математические символы ∫, ≤, ⊆, ∞; символы химических элементов).

Для представления информации используются знаковые системы, которые называются языками . Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Языки делятся на:

  • естественные (разговорные) — русский, английский, немецкий и др.;
  • формальные — встречающиеся в специальных областях человеческой деятельности (например, язык алгебры, языки программирования, электрических схем и др.)

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит . 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Например, пусть шарик находится в одной из четырех коробок. Таким образом, имеется четыре равновероятных события (N = 4). Тогда по формуле Хартли 4 = 2 I . Отсюда I = 2. То есть сообщение о том, в какой именно коробке находится шарик, содержит 2 бита информации.

Алфавитный подход

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log 2 32 = 5 битов.

Если N не является целой степенью 2, то число log 2 N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log 2 N", где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N" = 32; I = log 2 N" = log 2 (2 5) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

I = M · log 2 N.

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Решение. С помощью n лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 n сигналов. 2 5 < 50 < 2 6 , поэтому пяти лампочек недостаточно, а шести хватит.

Ответ: 6.

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log 2 101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log 2 128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Ответ: 70 байтов.

Вероятностный подход

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$I=-∑↙{i=1}↖{N}p_ilog_2p_i$,

где $I$ — количество информации;

$N$ — количество возможных событий;

$p_i$ — вероятность $i$-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

$p_1={1}/{2}, p_2={1}/{4}, p_3={1}/{8}, p_4={1}/{8}$.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

$I=-({1}/{2}·log_2{1}/{2}+{1}/{4}·log_2{1}/{4}+{1}/{8}·log_2{1}/{8}+{1}/{8}·log_2{1}/{8})={14}/{8}$ битов $= 1.75 $бита.

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 байт = 8 битов

1 килобайт (Кб) = 1024 байта = 2 10 байтов

1 мегабайт (Мб) = 1024 килобайта = 2 20 байтов

1 гигабайт (Гб) = 1024 мегабайта = 2 30 байтов

1 терабайт (Тб) = 1024 гигабайта = 2 40 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 0100 2 = В4 16 .

Ответ: В4 16 .

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации , или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000: 8: 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000: 8: 1024) ⋅ (3 ⋅ 60) = (2 8 ⋅ 10 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = (2 8 ⋅ 125 ⋅ 2 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = 125 ⋅ 45 = 5625 Кбайт.

Ответ: 5625 Кбайт.

Представление числовой информации. Сложение и умножение в разных системах счисления

Представление числовой информации с помощью систем счисления

Для представления информации в компьютере используется двоичный код, алфавит которого состоит из двух цифр — 0 и 1. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Система счисления — это система записи чисел с помощью определенного набора цифр.

Система счисления называется позиционной , если одна и та же цифра имеет различное значение, которое определяется ее местом в числе.

Позиционной является десятичная система счисления. Например, в числе 999 цифра «9» в зависимости от позиции означает 9, 90, 900.

Римская система счисления является непозиционной . Например, значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.

Позиция цифры в числе называется разрядом . Разряд числа возрастает справа налево, от младших разрядов к старшим.

Количество различных цифр, употребляемых в позиционной системе счисления, называется ее основанием .

Развернутая форма числа — это запись, которая представляет собой сумму произведений цифр числа на значение позиций.

Например: 8527 = 8 ⋅ 10 3 + 5 ⋅ 10 2 + 2 ⋅ 10 1 + 7 ⋅ 10 0 .

Развернутая форма записи чисел произвольной системы счисления имеет вид

$∑↙{i=n-1}↖{-m}a_iq^i$,

где $X$ — число;

$a$ — цифры численной записи, соответствующие разрядам;

$i$ — индекс;

$m$ — количество разрядов числа дробной части;

$n$ — количество разрядов числа целой части;

$q$ — основание системы счисления.

Например, запишем развернутую форму десятичного числа $327.46$:

$n=3, m=2, q=10.$

$X=∑↙{i=2}↖{-2}a_iq^i=a_2·10^2+a_1·10^1+a_0·10^0+a_{-1}·10^{-1}+a_{-2}·10^{-2}=3·10^2+2·10^1+7·10^0+4·10^{-1}+6·10^{-2}$

Если основание используемой системы счисления больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение: В — двоичная система, О — восмеричная, Н — шестнадцатиричная.

Например, если в двенадцатеричной системе счисления 10 = А, а 11 = В, то число 7А,5В 12 можно расписать так:

7А,5В 12 = В ⋅ 12 -2 + 5 ⋅ 2 -1 + А ⋅ 12 0 + 7 ⋅ 12 1 .

В шестнадцатеричной системе счисления 16 цифр, обозначаемых 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, что соответствует следующим числам десятеричной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Примеры чисел: 17D,ECH; F12AH.

Перевод чисел в позиционных системах счисления

Перевод чисел из произвольной системы счисления в десятичную

Для перевода числа из любой позиционной системы счисления в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

17D,ECH = 12 ⋅ 16 -2 + 14 ⋅ 16 -1 + 13 ⋅ 160 + 7 ⋅ 16 1 + 1 ⋅ 16 2 = 381,921875.

Перевод чисел из десятичной системы счисления в заданную

Для преобразования целого числа десятичной системы счисления в число любой другой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например, переведем десятичное число 475 в двоичную систему счисления. Для этого будем последовательно выполнять деление нацело на основание новой системы счисления, т. е. на 2:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1 ⋅ 2 8 + 1 ⋅ 2 7 + 1 ⋅ 2 6 + 0 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 0 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 1 + 2 + 8 + 16 + 64 + 128 + 256 = 475 10 .

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например, переведем десятичную дробь 0,375 10 в двоичную систему счисления:

Полученный результат — 0,011 2 .

Не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части.

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Для записи восьмеричных чисел используются восемь цифр, т. е. в каждом разряде числа возможны 8 вариантов записи. Каждый разряд восьмеричного числа содержит 3 бита информации (8 = 2 І ; І = 3).

Таким образом, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например:

1234,777 8 = 001 010 011 100,111 111 111 2 = 1 010 011 100,111 111 111 2 ;

1234567 8 = 001 010 011 100 101 110 111 2 = 1 010 011 100 101 110 111 2 .

При переводе двоичного числа в восьмеричную систему счисления нужно каждую триаду двоичных цифр заменить восьмеричной цифрой. При этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например:

1100111 2 = 001 100 111 2 = 147 8 ;

11,1001 2 = 011,100 100 2 = 3,44 8 ;

110,0111 2 = 110,011 100 2 = 6,34 8 .

Для записи шестнадцатеричных чисел используются шестнадцать цифр, т. е. для каждого разряда числа возможны 16 вариантов записи. Каждый разряд шестнадцатеричного числа содержит 4 бита информации (16 = 2 І ; І = 4).

Таким образом, для перевода двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры и преобразовать каждую группу в шестнадцатеричную цифру.

Например:

1100111 2 = 0110 0111 2 = 67 16 ;

11,1001 2 = 0011,1001 2 = 3,9 16 ;

110,0111001 2 = 0110,0111 0010 2 = 65,72 16 .

Для перевода шестнадцатеричного числа в двоичный код необходимо каждую цифру этого числа представить четверкой двоичных цифр.

Например:

1234,AB77 16 = 0001 0010 0011 0100,1010 1011 0111 0111 2 = 1 0010 0011 0100,1010 1011 0111 0111 2 ;

CE4567 16 = 1100 1110 0100 0101 0110 0111 2 .

При переводе числа из одной произвольной системы счисления в другую нужно выполнить промежуточное преобразование в десятичное число. При переходе из восьмеричного счисления в шестнадцатеричное и обратно используется вспомогательный двоичный код числа.

Например, переведем троичное число 211 3 в семеричную систему счисления. Для этого сначала преобразуем число 211 3 в десятичное, записав его развернутую форму:

211 3 = 2 ⋅ 3 2 + 1 ⋅ 3 1 + 1 ⋅ 3 0 = 18 + 3 + 1 = 22 10 .

Затем переведем десятичное число 22 10 в семеричную систему счисления делением нацело на основание новой системы счисления, т. е. на 7:

Итак, 211 3 = 31 7 .

Примеры решения задач

Пример 1. В системе счисления с некоторым основанием число 12 записывается в виде 110. Указать это основание.

Решение. Обозначим искомое основание п. По правилу записи чисел в позиционных системах счисления 12 10 = 110 n = 0 ·n 0 + 1 · n 1 + 1 · n 2 . Составим уравнение: n 2 + n = 12 . Найдем натуральный корень уравнения (отрицательный корень не подходит, т. к. основание системы счисления, по определению, натуральное число большее единицы): n = 3 . Проверим полученный ответ: 110 3 = 0· 3 0 + 1 · 3 1 + 1 · 3 2 = 0 + 3 + 9 = 12 .

Ответ: 3.

Пример 2. Указать через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4.

Решение. Последняя цифра в записи числа представляет собой остаток от деления числа на основание системы счисления. 22 - 4 = 18. Найдем делители числа 18. Это числа 2, 3, 6, 9, 18. Числа 2 и 3 не подходят, т. к. в системах счисления с основаниями 2 и 3 нет цифры 4. Значит, искомыми основаниями являются числа 6, 9 и 18. Проверим полученный результат, записав число 22 в указанных системах счисления: 22 10 = 34 6 = 24 9 = 14 18 .

Ответ: 6, 9, 18.

Пример 3. Указать через запятую в порядке возрастания все числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101. Ответ записать в десятичной системе счисления.

Решение. Для удобства воспользуемся восьмеричной системой счисления. 101 2 = 5 8 . Тогда число х можно представить как x = 5 · 8 0 + a 1 · 8 1 + a 2 · 8 2 + a 3 · 8 3 + ... , где a 1 , a 2 , a 3 , … — цифры восьмеричной системы. Искомые числа не должны превосходить 25, поэтому разложение нужно ограничить двумя первыми слагаемыми (8 2 > 25), т. е. такие числа должны иметь представление x = 5 + a 1 · 8. Поскольку x ≤ 25 , допустимыми значениями a 1 будут 0, 1, 2. Подставив эти значения в выражение для х, получим искомые числа:

a 1 = 0; x = 5 + 0 · 8 = 5;.

a 1 =1; x = 5 + 1 · 8 = 13;.

a 1 = 2; x = 5 + 2 · 8 = 21;.

Выполним проверку:

13 10 = 1101 2 ;

21 10 = 10101 2 .

Ответ: 5, 13, 21.

Арифметические операции в позиционных системах счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Пример выполнения сложения : сложим двоичные числа 111 и 101, 10101 и 1111:

Пример выполнения вычитания: вычтем двоичные числа 10001 - 101 и 11011 - 1101:

Пример выполнения умножения: умножим двоичные числа 110 и 11, 111 и 101:

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Например, выполним сложение восьмеричных чисел 36 8 и 15 8 , а также вычитание шестнадцатеричных чисел 9С 16 и 67 16:

При выполнении арифметических операций над числами, представленными в разных системах счисления, нужно предварительно перевести их в одну и ту же систему.

Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой : каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 2 7 + 1 ⋅ 2 6 + 1 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 1 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 255 10 .

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2 n - 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом .

Для представления отрицательных чисел используется дополнительный код . Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2 n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа . (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа -2014 10 для шестнадцатиразрядного представления:

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

Например:

1) Найдем разность 13 10 - 12 10 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

13 10 = 1101 2 и 12 10 = 1100 2 .

Запишем прямой, обратный и дополнительный коды для числа -12 10 и прямой код для числа 13 10 в восьми битах:

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 8 10 - 13 10 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа -13 10 и прямой код для числа 8 10 в восьми битах:

Вычитание заменим сложением:

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 - 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число -5 10 .

Так как при п-разрядном представлении отрицательного числа А в дополнительном коде старший разряд выделяется для хранения знака числа, минимальное отрицательное число равно: А = -2 n-1 , а максимальное: |А| = 2 n-1 или А = -2 n-1 - 1.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = -2 31 = -2147483648 10 .

Максимальное положительное число равно

А = 2 31 - 1 = 2147483647 10 .

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой , использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

где $m$ — мантисса числа (правильная отличная от нуля дробь);

$q$ — основание системы счисления;

$n$ — порядок числа.

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

2674,381 = 0,2674381 ⋅ 10 4 .

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность ) или 8 байтов (двойная точность ). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 1111111 2 = 127 10 . Так как числа представляются в двоичной системе счисления, то

$q^n = 2^{127}≈ 1.7 · 10^{38}$.

Аналогично, максимальное значение мантиссы равно

$m = 2^{23} - 1 ≈ 2^{23} = 2^{(10 · 2.3)} ≈ 1000^{2.3} = 10^{(3 · 2.3)} ≈ 10^7$.

Таким образом, диапазон чисел обычной точности составляет $±1.7 · 10^{38}$.

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование , т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными . Они позволяют использовать 256 символов (N = 2 I = 2 8 = 256). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode . В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов (N = 2 16 = 65536). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Ответ: 32 байта или 496 битов.