Самодельный частотный преобразователь для электродвигателя. Частотник для работы с асинхронным двигателем. Подключение преобразователя частот – пошаговая инструкция

Созданный в конце XIX столетия, трёхфазный асинхронный двигатель стал незаменимой составляющей современного промышленного производства.

Для плавного пуска и остановки такого оборудования требуется специальное устройство – преобразователь частоты. Особо актуально наличие преобразователя для крупных двигателей с большой мощностью. С помощью этого дополнительного устройства можно регулировать пусковые токи, то есть, контролировать и ограничивать их величину.

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.

На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

На что обратить внимание при выборе?

Производители делают упор на стоимость преобразователя. Поэтому многие опции доступны только у дорогих моделей. При выборе устройства следует определиться с основными требованиями для конкретного использования.

  • Управление может быть векторным или скалярным. Первое даёт возможность точной регулировки. Второе лишь поддерживает одно, заданное соотношение между частотой и напряжением на выходе и подходит только для простых приборов, вроде вентилятора.
  • Чем выше указанная мощность, тем универсальнее будет устройство — обеспечится взаимозаменяемость и упростится обслуживание оборудования.
  • Диапазон напряжения сети должен быть максимально широким, что обезопасит при перепадах его норм. Понижение не так опасно для устройства, как повышение. При последнем — вполне могут взорваться сетевые конденсаторы.
  • Частота должна полностью соответствовать потребностям производства. Нижний предел указывает на диапазон регулирования скорости привода. Если нужен более широкий, потребуется векторное управление. На практике применяются частоты от 10 до 60 Гц, реже до 100Гц.
  • Управление осуществляется через различные входы и выходы. Чем их больше, тем лучше. Но большее количество разъёмов существенно увеличивает стоимость устройства и усложняет его настройку.
  • Дискретные входы (выходы) используются для ввода команд управления и выхода сообщений о событиях (например, о перегреве), цифровые – для ввода сигналов цифровых (высокочастотных), аналоговые – для ввода сигналов обратной связи.

  • Шина управления подключаемого оборудования должна совпадать с возможностями схемы частотного преобразователя по количеству входов и выходов. Лучше иметь небольшой запас для модернизации.
  • Перегрузочные способности. Оптимален выбор устройства с мощностью на 15% больше мощности используемого двигателя. В любом случае нужно прочесть документацию. Производители указывают все основные параметры двигателя. Если важны пиковые нагрузки, следует выбрать преобразователь с показателем пикового тока на 10% больше указанного.

Сборка преобразователя частоты для асинхронного двигателя своими руками

Собрать инвертор или преобразователь можно самостоятельно. В настоящее время в сети находится множество инструкций и схем такой сборки.

Основная задача – получить «народную» модель. Дешёвую, надёжную и рассчитанную на бытовое применение. Для работы оборудования в промышленных масштабах, конечно, лучше отдать предпочтение устройствам, реализуемым магазинами.
Порядок действий по сборке схемы частотного преобразователя для электродвигателя

Для работы с домашней проводкой, с напряжением 220В и одной фазой. Примерная мощность двигателя до 1кВт.

На заметку. Длинные провода нужно снабдить помехоподавляющими кольцами.

Регулировка вращения ротора двигателя вмещается в диапазон частоты 1:40. Для малых частот необходимо фиксированное напряжение (IR компенсация).

Подключение частотного преобразователя к электродвигателю

Для однофазной проводки на 220В (использования в домашних условиях) подключение осуществляется по схеме «треугольник». Выходной ток не должен превышать 50% от номинального!

Для трёхфазной проводки на 380В (промышленного использования) подключение двигателя к частотному преобразователю осуществляется по схеме «звезда».

Преобразователь (или ) имеет соответствующие клеммы, помеченные буквами.

  • R, S, T– сюда подключаются провода сети, очерёдность не имеет значения;
  • U , V , W – для включения асинхронного двигателя (если двигатель вращается в обратную сторону, нужно поменять местами любой из двух проводов на этих клеммах).
  • Отдельно предусмотрена клемма для заземления.

Для продления срока эксплуатации преобразователя необходимо соблюдать следующие правила:

  1. Регулярно очищать внутренности устройства от пыли (лучше выдувать её небольшим компрессором, так как пылесос с загрязнением не всегда справится – пыль уплотняется).
  2. Своевременно заменять узлы. Электролитические конденсаторы рассчитаны на пять лет, предохранители на десять лет эксплуатации. А вентиляторы охлаждения на два-три года использования. Внутренние шлейфы следует заменять раз в шесть лет.
  3. Контролировать внутреннюю температуру и напряжение на шине постоянного тока.
  4. Повышение температур приводит к засыханию термопроводящей пасты и разрушению конденсаторов. На силовых компонентах привода её следует менять ни реже одного раза в три года.

  5. Придерживаться условий эксплуатации. Температура окружающей среды не должна превышать +40 градусов. Недопустима высокая влажность и запылённость воздуха.

Управление асинхронным мотором (например, ) – довольно сложный процесс. Преобразователи, изготовленные кустарно, дешевле промышленных аналогов и вполне подходят для использования в бытовых целях. Однако для применения на производстве предпочтительнее установить инверторы, собранные в заводских условиях. Обслуживание таких дорогих моделей под силу только хорошо обученному техническому персоналу.

В настоящее время, асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется – инвертор с ШИМ регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы . Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).


Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с , который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

    фирменные преобразователи для конкретных типов оборудования.

    универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от может быть подключен непосредственно к преобразователю частоты.


Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

    аналоговые - сигналы напряжения или тока (0...10 В, 0/4...20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;

    дискретные сигналы напряжения или тока (0...10 В, 0/4...20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);

    цифровые (данные) - сигналы напряжения (0...5 В, 0...10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;

    релейные - контакты реле (0...220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Электромагнитная совместимость

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. , кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Чтение документации

Следует заметить, что хотя частотные преобразователи похожи друг на друга и освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Асинхронный электродвигатель конструктивно прост и неприхотлив в эксплуатации. Но обладает рядом существенных недостатков:

  • ток в момент запуска (пусковой ток) превышает номинальный в несколько раз;
  • частоту вращения вала электродвигателя нельзя изменить.

Этих недостатков лишены асинхронные электродвигатели с фазным ротором и двигатели постоянного тока. Но их конструкция сложнее, а управление режимами работы требует установки громоздких магазинов сопротивлений, мощных контакторов. Управление режимами происходит с помощью релейно-контакторных схем, что снижает надежность работы.

Конструкция и принцип действия частотного преобразователя

Привлекательной особенностью преобразователя является тот факт, что для него не требуется серьезных переделок в схеме управления и электропитания мотора . В простейшем случае он ставится вместо элемента управления электродвигателем: пускателя или контактора. Сигналы с кнопок управления переключаются с катушек управления на соответствующие входы.

Но вот кабель к электродвигателю и кабель от распределительного устройства до преобразователя придется заменить на экранированные . Иначе не будут выполнены условия по электромагнитной совместимости частотника, являющегося полупроводниковым прибором.

В нем происходит два основных процесса: сначала трехфазное (или однофазное) напряжение питания выпрямляется, преобразуясь в постоянное. Затем из этого напряжения формируется синусоидальное напряжение питания электродвигателя нужной частоты и величины. Делается это несколькими способами, самый распространенный из которых – широтно-импульсная модуляция. Схема управления формирует на выходе пачки коротких импульсов, которые, сглаживаясь на индуктивности обмоток электродвигателя, дают в итоге практически синусоидальное напряжение.

Для выпрямления на входе частотного преобразователя установлены полупроводниковые диоды , рассчитанные на номинальный ток устройства. Перед ними обязательно устанавливается помехоподавляющие фильтры , чтобы защитить как сам частотник от внешних помех, так и не дать проникнуть помехам от него самого в сеть, к которой он подключен. За выпрямительными диодами установлены конденсаторы, сглаживающие напряжение пульсаций.


Для силовой схемы формирования выходного напряжения используются мощные транзисторы или тиристоры . Поскольку в процессе работы в корпусе преобразователя выделяется тепло, для его отвода в него встраиваются кулеры , а сам прибор устанавливается вдали от горячих поверхностей. Сверху, снизу и по бокам прибора на расстояниях, указанных в паспорте завода-изготовителя, должно быть свободное пространство.

Для подключения кабелей в частотном преобразователе есть три вида клемм:

  • силовые клеммы: для подключения кабеля питания и кабеля к электродвигателю;
  • клеммы для подключения входных и выходных сигналов, как дискретных, так и аналоговых;
  • разъемы для подключения к автоматическим системам управления технологическим процессом (АСУТП).

На дискретные входы подаются сигналы управления от кнопок или реле.

Дискретные выходы передают информацию о состоянии частоника.

Аналоговые входы предназначены для внешнего задания частоты вращения от устройств АСУ или получения частотным преобразователем сигналов от датчиков, на основе которых он принимает решение о величине частоты вращения двигателя, необходимой в данный момент.

Аналоговые выходы необходимы для подключения к устройствам отображения информации. На них частотник может выдавать значения, заданные в его установках: выходной ток, мощность, частоту вращения.


Управляет работой частотного преобразователя его мозг – блок управления . Для работы ему необходимы исходные данные: параметры электродвигателя и логика, согласно которой он будет регулировать частоту. Для их вода на передней панели прибора есть дисплей и кнопки , позволяющие эти данные ввести.

Простейшие схемы управления частотным преобразователем

С параметрами электродвигателя все просто: с таблички электродвигателя переписываются номинальные мощность, напряжение, ток и частота вращения. Затем они вводятся в память устройства. А вот с параметрами управления, в зависимости от сложности конструкции частотного преобразователя, все сложнее. Это зависит от сложности технологического процесса, схемы управления и регулирования, типа преобразователя, наличия АСУТП.

Простейшей схемой управления является ручной запуск с фиксированной частотой . Для пуска используются кнопки на самом частотнике, частота вращения регулируется вручную теми же кнопками, в зависимости от требуемой. Для ее реализации не нужны дорогостоящие аппараты, достаточно самого простого и дешевого.

С применением кнопочной станции для управления пуском и остановкой двигателя схема незначительно усложняется. Кабель от кнопок управления подключается к дискретным входам согласно схеме частотника. При этом в его настройках включается опция, разрешающее внешнее дискретное управление.

Способы автоматического регулирования частоты с использованием датчиков

Но такое использование прибора, позволяющего самостоятельно решать, какую частоту выбрать в тот или иной момент, неразумно. Рассмотрим пример его использования для поддержания постоянного уровня воды в баке водонапорной башни .

Традиционная схема управления таким насосом подразумевает наличие двух датчиков уровня: верхнего и нижнего. При понижении уровня воды до минимума срабатывание датчика приводит к запуску насоса, при достижении верхнего – к остановке. При небольшом объеме бака и повышенном потреблении воды насос часто включается и отключается.

При использовании частотного преобразователя в бак врезается датчик давления в самой нижней его точке. Сигнал с датчика пропорционален давлению столба жидкости, то есть, уровню воды в баке. Датчик подключается к аналоговому входу частотного преобразователя, в его настройках выбирается соответствующий макрос (логическая схема работы), выбирается метод задания частоты и задаются параметры, необходимые для его реализации. В нашем случае, это диапазон скоростей вращения насоса при минимальном уровне в емкости и при максимальном. В первом случае это максимально возможная частота вращения электродвигателя насоса, во втором – минимально возможное число оборотов для самого насоса (когда он еще что-то качает, а не перемалывает воду).

Теперь насос будет работать постоянно, но со скоростью вращения, зависящей от величины потребления воды из резервуара.

Таким же образом можно организовать работу насоса, питающего водопроводную сеть, используя датчик давления в напорной магистрали . В этом случае он будет поддерживать постоянным напор воды в ней.


Частотный преобразователь может управлять работой не только насосов, но и вентиляторов. Наиболее простой пример: вентиляторы охлаждения . Чем быстрее они вращаются, тем более сильный поток воздуха они создают, помещение (поверхность теплообменника) охлаждается в большей степени. Для регулирования не нужно измерять скорость потока или объем перекачиваемого воздуха. Достаточно датчика температуры , фиксирующего ее в нужной точке помещения (или на выходе теплообменника). Частотный преобразователь будет изменять скорость вращения вентилятора так, чтобы поддерживать заданное значение температуры или держать ее в допустимом диапазоне.

Управление электродвигателями грузоподъемных механизмов

Уж где необходимо изменять скорость вращения электродвигателей, так это на кранах. Для этого там используются асинхронные двигатели с фазным ротором. Но электрическую начинку крана можно сделать проще и компактнее, при этом получив в качестве бонуса еще и непревзойденную плавность регулирования скорости движения.

И все это позволят сделать частотные преобразователи. Для управления их работой в кабине машиниста устанавливаются соответствующие устройства, формирующие понятные частотнику сигналы управления. На каждый из электродвигателей приводов (подъем, перемещение тележки, перемещение моста) устанавливается по частотному преобразователю. В итоге число контакторов в схеме управления краном сводится к минимуму, что повышает его надежность.

К недостаткам относится только необходимость защиты шкафов с частотниками от пыли , но при этом нужно обеспечить их охлаждение в процессе работы.

Промышленные установки с системами АСУТП

Уходят в небытие времена, когда операторы вращали вручную задвижки, а регулировку подачи сырья на конвейере выполняли, перекрывая шибером его поток. Современные операторы технологических установок в чистой спецовке сидят за мониторами обыкновенного компьютера, связанного со щитовой АСУ. Любой параметр процесса меняет кликом мышки, результат которого преобразуется либо в команду «включить/выключить», либо в изменение сигнала управления. Важную роль в этом раю играют частотные преобразователи.


Для привода того же конвейера всегда использовались асинхронные электродвигатели. Поэтому для перевода его на управления с помощью частотного преобразователя не требуется глобальных переделок, даже мотор можно оставить тот же самый. Но при этом получается выигрыш в точности ведения процесса (количество перемещаемого продукта задается частотой вращения привода, то есть – скоростью движения ленты), а также – экономится электроэнергия.


Для регулировки используется два способа:

  • с использованием аналогового входа, когда АСУТП выдает на каждый частотный преобразователь персональный сигнал управления;
  • с использованием интерфейсных модулей, когда управление происходит по одной шине несколькими приборами в цифровой форме по системному протоколу.

Важной особенностью этого подходя является тот факт, что частотник уже ничего не решает сам, все за него выполняет АСУ . Она принимает сигналы от датчиков, характеризующие состояние технологического процесса. Затем по заданной программе принимает решение, что делать дальше.

Содержание:

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко . Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее - от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе , в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

В данной статье будет рассмотрен частотник для электродвигателя, принцип его работы и основные компоненты. Основной упор будет сделан на теорию, чтобы вы поняли и смогли в дальнейшем осуществить проектировку и изготовление своими руками. Но для начала потребуется небольшой вводный курс, в котором будет рассказано о том, что такое частотник и для каких целей он необходим.

Функции частотного преобразователя

Львиную долю занимают в промышленности асинхронные двигатели. И ими управлять всегда было трудно, так как они имеют постоянную частоту вращения ротора, а изменять входное напряжение оказывается очень сложно, а порой даже невозможно. Но частотник полностью изменяет картину. И если раньше для изменения скорости движения транспортера, например, использовались разнообразные редукторы, то сегодня достаточно применить одно электронное устройство.

Кроме того, частотники позволяют получить не только возможность изменения параметров привода, но и несколько дополнительных степеней защиты. Отпадает необходимость в а порой даже не нужно иметь трехфазную сеть для обеспечения нормальной работы асинхронного двигателя. Все эти обязанности, связанные с коммутацией и включением электропривода, переходят к частотному преобразователю. Он позволяет изменять фазы на выходе, частоту тока (следовательно, и скорость вращения ротора меняется), проводить регулировку запуска и торможения, а также можно реализовать множество других функций. Все зависит от микроконтроллера, используемого в схеме управления.

Принцип действия

Сделать частотник для электродвигателя своими руками, схема которого приведена в статье, достаточно просто. Он позволяет осуществить преобразование одной фазы в три. Следовательно, появляется возможность использовать в быту асинхронный электродвигатель. При этом не потеряется его КПД и мощность. Ведь вы знаете, что при включении мотора в сеть с одной фазой происходит уменьшение этих параметров чуть ли не в два раза. А все дело в нескольких преобразованиях поступающего на вход устройства напряжения.

Первым по схеме идет выпрямительный блок. Более подробно о нем будет рассказано ниже. После выпрямленное напряжение подвергается фильтрации. И поступает чистый на вход инвертора. Он осуществляет преобразование постоянного тока в переменный с необходимым числом фаз. Вот этот каскад можно подвергнуть регулировкам. Он состоит из полупроводников, к которым подключена схема управления на микроконтроллере. Но теперь обо всех узлах более подробно.

Выпрямительный блок

Он может быть двух типов - одно- и трехфазным. Первый вид выпрямителя можно использовать в любой сети. Если у вас трехфазная, то достаточно произвести подключение к одной. Схема частотника для электродвигателя не обходится без выпрямительного блока. Так как имеется различие по числу фаз, значит, необходимо использовать определенное число полупроводниковых диодов. Если речь идет о частотных преобразователях, которые питаются от одной фазы, то требуется выпрямитель из четырех диодов. Они включаются по мостовой схеме.

Она позволяет уменьшить разницу между значением напряжения на входе и выходе. Конечно, можно использовать и однополупериодную схему, но она неэффективна, возникает большое число колебаний. Но если речь идет о трехфазном подключении, то необходимо в схеме использовать шесть полупроводников. Точно такая же схема в выпрямителе автомобильного генератора, никаких отличий нет. Единственное, что можно сюда добавить, так это еще три дополнительных диода, предназначенные для защиты от обратного напряжения.

Фильтрующие элементы

После выпрямителя идет фильтр. Его основное предназначение - это отсечка всей переменной составляющей Для более ясной картины нужно составить схему замещения. Итак, плюс проходит через катушку. А затем между плюсом и минусом включен электролитический конденсатор. Вот он-то и интересен в схеме замещения. Если катушка замещается то конденсатор при наличии различного тока может быть либо проводником, либо разрывом.

Как было сказано, в выпрямителе на выходе постоянный ток. А при подаче его на электролитический конденсатор не происходит ничего, так как последний является разрывом цепи. Но вот есть небольшая переменная в токе. А если течет переменный ток, то в схеме замещения конденсатор становится проводником. Следовательно, происходит замыкание плюса на минус. Данные выводы сделаны по законам Кирхгофа, которые являются основными в электротехнике.

Инвертор на силовых транзисторах

А вот теперь добрались до самого главного узла - каскада транзисторов. На них сделан инвертор - преобразователь постоянного тока в переменный. Если изготавливается частотник для электродвигателя своими руками, то рекомендуется использовать сборки IGBT-транзисторов, найти их можно в любом магазине радиодеталей. Причем стоимость всех компонентов для изготовления частотника окажется в десятки раз меньше, нежели цена готового изделия, даже китайского производства.

Для каждой фазы используется два транзистора. Они включены между плюсом и минусом, как изображено на схеме, приведенной в статье. Но есть у каждого транзистора особенность - управляющий вывод. В зависимости от того, какой на него подан сигнал, изменяются свойства полупроводникового элемента. Причем можно это произвести как при помощи ручного переключения (например, несколькими микровыключателями подавать напряжение на необходимые управляющие выводы), так и автоматического. Вот о последнем и пойдет речь дальше.

Схема управления

И если подключение частотного преобразователя к электродвигателю выполнить просто, достаточно только соединить соответствующие выводы, то со схемой управления все куда сложнее. Все дело в том, что возникает необходимость в программировании устройства, чтобы добиться максимально возможных регулировок от него. В основе находится микроконтроллер, к нему производится подключение считывающих устройств и исполнительных. Так, необходимо наличие трансформаторов тока, которые будут постоянно следить за мощностью, потребляемой электроприводом. И в случае превышения должно произойти отключение частотника.

Подключение схемы управления

Кроме того, предусматривается защита от перегрева. На выход микроконтроллера при помощи (сборки Дарлингтона) производится подключение управляющих выводов IGBT-транзисторов. Кроме того, необходимо визуально контролировать параметры, поэтому нужно включить в схему LED-дисплей. Из считывающих устройств требуется добавить кнопки, которые позволят переключаться между режимами программирования, а также переменное сопротивление, вращением его изменяется скорость вращения ротора электродвигателя.

Заключение

Хочется отметить, что изготовить можно и самостоятельно частотник для электродвигателя, цена же готового изделия начинается от 5000 рублей. И это для электродвигателей, мощность которых не превышает 0,75 кВт. Если нужно осуществить управление более мощным приводом, потребуется частотник подороже. Для использования в быту достаточно схемы, рассмотренной ниже. Причина - нет необходимости в большом количестве функций и настроек, самое главное - это возможность изменения частоты вращения ротора.