Смотреть что такое "АЦП" в других словарях. Аналого-цифровой преобразователь

Любой АЦП является сложным электрон­ным устройством, которое может быть выполнено в виде одной интегральной микросхемы или содержать большое количество различных электронных компо­нентов. В связи с этим характеристики АЦП зависят не только от его построения, но и от характеристик элементов, которые входят в его состав. Большинство АЦП оценивают по их основным метрологическим показателям, которые можно разделить на две группы: статические и динамические.

К статическим характеристикам АЦП относят: абсолютные значения и поляр­ности входных сигналов, входное сопротивление, значения и полярности выход­ных сигналов, выходное сопротивление, значения напряжений и токов источников питания, количество двоичных или десятичных разрядов выходного кода, погрешности преобразования постоянного напряжения и др.

К динамическим па­раметрам АЦП относят: время преобразования, максимальную частоту дискрети­зации, апертурное время, динамическую погрешность и др.

Рассмотрим некоторые из этих параметров более подробно. Основной харак­теристикой АЦП является его разрешающая способность , которую принято опре­делять величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Разрешающую способность можно выражать в процентах, в количе­стве разрядов или в относительных единицах.

Например, 10-разрядный АЦП име­ет разрешающую способность (1024) -1 » 10 -3 = 0,1 %. Если напряжение шкалы для такого АЦП равно 10 В, то абсолютное значение разрешающей способности будет около 10 мВ.

Реальное значение разрешающей способности отличается от расчетного из-за погрешностей АЦП. Точность АЦП определяется значениями абсолютной погрешности, дифференциальной и интегральной нелинейности. Абсолютную по­грешность АЦП определяют в конечной точке характеристики преобразования, поэтому ее обычно называют погрешностью полной шкалы и измеряют в едини­цах младшего разряда.

Дифференциальную нелинейность (DNL) определяют через идентичность двух соседних приращений сигнала, т. е. как разность напряжений двух соседних квантов: DNL = hi-h i +1 . Определение дифференциальной нелинейности показано на рис. 2.3 а.



Интегральная нелинейность АЦП (INL) характеризует идентичность прираще­ний во всем диапазоне входного сигнала. Обычно ее определяют, как показано на рис. 2.3 б, по максимальному отклонению сглаженной характеристики преобра­зования от идеальной прямой линии, т. е. INL = u i " – u i .

Время преобразования Т пр обычно определяют как интервал времени от начала преобразования до появления на выходе АЦП устойчивого кода входного сигна­ла. Для одних типов АЦП это время постоянное и не зависит от значения входно­го сигнала, для других ацп это время зависит от значения входного сигнала. Если АЦП работает без устройства выборки и хранения, то время преобразова­ния является апертурным временем.

Максимальная частота дискретизации - его частота, с которой возможно преобразование входного сигнала, при условии, что выбранный параметр (например, абсолютная погрешность) не выходит за заданные пределы. Иногда максимальную частоту преобразования принимают равной обратной величине времени преобразования. Однако это пригодно не для всех типов АЦП.

Рис. 2.3. Определение дифференциальной нелинейности (а)

и интегральной нелинейности (б)

Принципы построения АЦП

Все типы используемых АЦП можно разделить по признаку измеряемого значения напряжения на две группы: АЦП мгновенных значений напряжения и АЦП средних значений напряжения (интегрирующие АЦП). Рассмотрим вначале АЦП, которые позволяют определять код мгновен­ного значения напряжения, а затем рассмотрим интегрирующие АЦП и особенно­сти их использования.

АЦП мгновенных значений можно разделить на следующие основные виды: пос­ледовательного счета, последовательного приближения, параллельные, параллель­но-последовательные и с промежуточным преобразованием в интервал времени.

Структурная схема АЦП последовательного счета приведена на рис. 2.4а. Она содержит компаратор, при помощи которого выполняется сравнение входно­го напряжения с напряжением обратной связи. На прямой вход компаратора поступает входной сигнал u вх , а на инвертирующий - напряжение u 5 обратной связи. Работа преобразователя начинается с приходом импульса «ПУСК» от схе­мы управления (на рисунке она не показана), который замыкает ключ S. Через замкнутый ключ S импульсы u 1 от генератора тактовых импульсов поступают на счетчик, который управляет работой цифро-аналогового преобразователя (ЦАП). В результате последовательного увеличения выходного кода счетчика происхо­дит последовательное ступенчатое увеличение выходного напряжения u 5 ЦАП. Питание ЦАП выполняется от источника опорного напряжения u 4 .

Когда выходное напряжение ЦАП сравняется с входным.напряжением, про­изойдет переключение компаратора и по его выходному сигналу «СТОП» ра­зомкнется ключ S. В результате импульсы от генератора перестанут поступать на вход счетчика. Выходной код, соответствующий равенству u вх = u 5 снимается с выходного регистра счетчика.

Рис. 2.4. Структурная схема АЦП последовательного счета (а)

и графики процесса преобразования (б)

Графики, иллюстрирующие процесс преобразования напряжения в цифровой код, приведены на рис. 2.4 б. Из этих графиков видно, что время преобразования переменное и зависит от уровня входного сигнала. При числе двоичных разрядов счетчика, равном n , и периоде следования счетных импульсов Т максимальное время преобразования можно определить по формуле:

Т пр = (2 n - 1)T. (2.4)

Так, например, при n = 10 разрядов и T = 1мкс (т.е. при тактовой частоте 1 МГц) максимальное время преобразования равно

Т пр = (2 10 - 1) = 1024мкс » 1 мс .

что обеспечивает максимальную частоту преобразования около 1 кГц.

Уравнение преобразования АЦП последовательного счета можно записать в виде:

kDU = u вх,

где 0 < k < n - число ступеней до момента сравнения, DU = h - значение одной ступени, т. е. шаг квантования.

Структурная схема АЦП последовательного приближения приведена на рис. 2.5 а . По сравнению со схемой АЦП последовательного счета в ней сделано одно существенное изменение - вместо счетчика введен регистр последовательно­го приближения (РПП). Это изменило алгоритм уравновешивания и сократило время преобразования.

В основе работы АЦП с РПП лежит принцип дихотомии, т. е. последователь­ного сравнения преобразуемого напряжения u вх с 1/2, 1/4, 1/8 и т. д. возможного максимального его значения U m . Это позволяет для n -разрядного АЦП выполнить весь процесс преобразования за п последовательных шагов приближения (ите­раций) вместо (2 n -1) при использовании последовательного счета, и получить существенный выигрыш в быстродействии. График процесса преобразования АЦП с РПП показан на рис. 2.5 б.

Рис. 2.5. Структурная схема АЦП последовательного приближения (а),

графики процесса преобразования (б) и диаграмма переходов

для трехразрядного АЦП (в)

В качестве примера на рис. 2.5 в показана диаграмма переходов для трехраз­рядного АЦП последовательного приближения. Поскольку на каждом шаге про­изводится определение значения одного разряда, начиная со старшего, то такой АЦП часто называют АЦП поразрядного уравновешивания. При первом сравне­нии определяется - больше или меньше напряжение u вх, чем Um/2. На следующем шаге определяется, в какой четверти диапазона находится u вх . Каждый последую­щий шаг вдвое сужает область возможного результата.

При каждом шаге сравнения компаратор формирует импульсы, соответствую­щие состоянию «больше-меньше» (1 или 0), управляющие регистром последова­тельных приближений.

Структурная схема параллельного АЦП приведена на рис. 2.6. Преобразова­тель осуществляет одновременное квантование входного сигнала u вх с помощью набора компараторов, включенных параллельно источнику сигнала. Пороговые уровни компараторов установлены с помощью резистивного делителя в соответ­ствии с используемой шкалой квантования. При подаче на входы компараторов сигнала u вх на их выходах получим квантованный сигнал, представленный в уни­тарном коде.

Рис. 2.6. Структурная схема параллельного АЦП

Для преобразования унитарного кода в двоичный (или двоично-десятичный) используют кодирующий преобразователь. При работе в двоичном коде все рези­сторы делителя имеют одинаковые сопротивления R. Время преобразования тако­го преобразователя составляет один такт, т. е. Т пр = Т . Параллельные преобразова­тели являются в настоящее время самыми быстрыми и могут работать с частотой дискретизации свыше 100 МГц.

Делитель опорного напряжения представляет собой набор низкоомных резисторов с сопротивлением около 1 Ом. По выводу «Коррекция» возможно про­ведение коррекции напряжения смещения нулевого уровня на входе, а по выводу U оп2 - абсолютной погрешности преобразования в конечной точке шкалы. Номи­нальные значения опорных напряжений имеют значения: U оп1 = - 0,075 ... 0 B, и U оп2 = -2,1 ... -1,9 В. Типовая задержка срабатывания компараторов около 7 нс.

Структурная схема последовательно-параллельного АЦП приведена на рис. 2.7. Такой АЦП работает в несколько тактов. В первом такте АЦП преобразует стар­шие разряды входного напряжения u вх в цифровой код (на схеме это разряды 2 3 ... 2 5). Затем во втором такте эти разряды преобразуются с помощью ЦАП в напряжение, которое вычитается из входного сигнала в вычитающем устройстве ВУ. В третьем такте АЦП 2 преобразует полученную разность в код младших разрядов входного напряжения u вх .

Такие преобразователи характеризуется меньшим быстродействием по срав­нению с параллельными, но имеют меньшее число компараторов. Так, например, для 6-ти разрядного параллельного АЦП необходимо 64 компаратора, а для пос­ледовательно-параллельного АЦП - всего 16.

Количество каскадов в таких АЦП может быть увеличено, поэтому они часто называются многокаскадными или конвейерными. Выходной код таких АЦП представляет собой сумму кодов N = N 1 + N 2 + N 3 +..., вырабатываемых отдельными каскадами.

Рис. 2.7. Структурная схема параллельно-последовательного АЦП

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Назначение и классификация аналого-цифровых преобразователей.

2. Основные характеристики АЦП.

3. Основные принципы построения АЦП.

4. Схема АЦП последовательного счета.

5. Схема параллельного АЦП.

6. Схема параллельно-последовательного АЦП.

7. Схема АЦП последовательных приближений.


3 ВИДЫ ДВОИЧНЫХ КОДОВ

Четырёхканальный аналого-цифровой преобразователь

Аналого-цифровое преобразование электрических сигналов подобно взвешиванию груза на рычажных весах. Итальянский математик Фибоначчи (1170-(1228-1250)) сформулировал задачу наименьшего числа гирь для взвешивания грузов наибольшего диапазона на рычажных весах, которая стала известна под названием «задача о гирях». Решив эту задачу, Фибоначчи пришёл к выводу, что наименьшее число гирь получается при выборе весов гирь в позиционной симметричной троичной системе счисления . Из этого следует, что наиболее оптимальными аналого-цифровыми преобразователями являются аналого-цифровые преобразователи, работающие в позиционной симметричной троичной системе счисления. Из этого следует также вывод, что «электронное взвешивание» намного отстаёт от механического взвешивания, в котором к позиционной симметричной троичной системе счисления пришли ещё в XII веке. Математика «электронного взвешивания» находится ниже уровня математики механического взвешивания XII века. Следует также отметить, что Фибоначчи в своей задаче не учитывал число взвешиваний. При учёте числа взвешиваний (числа итераций при «электронном взвешивании») оказывается, что наименьшее число взвешиваний (итераций) также происходит при выборе позиционной симметричной троичной системы счисления.

Разрешение

Разрешение АЦП - минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП. Обычно измеряется в вольтах, поскольку для большинства АЦП входным сигналом является электрическое напряжение. В случае единичного измерения без учёта шумов разрешение напрямую зависит от разрядности АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. Измеряется в битах . Например, АЦП, способный выдать 256 дискретных значений (0..255), имеет разрядность 8 бит, поскольку 2 8 = 256 .

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

  • Пример 1
    • Диапазон входных значений = от 0 до 10 вольт
    • Разрядность АЦП 12 бит: 2 12 = 4096 уровней квантования
    • Разрешение по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ
  • Пример 2
    • Диапазон входных значений = от −10 до +10 вольт
    • Разрядность АЦП 14 бит: 2 14 = 16384 уровней квантования
    • Разрешение по напряжению: (10-(-10))/16384 = 20/16384 = 0,00122 вольт = 1,22 мВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (effective number of bits - ENOB), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение С/Ш входного сигнала должно быть примерно 6 дБ на каждый бит разрядности.

Типы преобразования

Линейные АЦП

Большинство АЦП считаются линейными, хотя аналого-цифровое преобразование по сути является нелинейным процессом (поскольку операция отображения непрерывного пространства в дискретное - операция нелинейная). Термин линейный применительно к АЦП означает, что диапазон входных значений, отображаемый на выходное цифровое значение, связан по линейному закону с этим выходным значением, то есть выходное значение k достигается при диапазоне входных значений от

m (k + b ) m (k + 1 + b ),

где m и b - некоторые константы. Константа b , как правило, имеет значение 0 или −0.5. Если b = 0, АЦП называют квантователь с ненулевой ступенью (mid-rise ), если же b = −0,5, то АЦП называют квантователь с нулём в центре шага квантования (mid-tread ).

Нелинейные АЦП

Важным параметром, описывающим нелинейность, является интегральная нелинейность (INL) и дифференциальная нелинейность (DNL).

Апертурная погрешность (джиттер)

Пусть мы оцифровываем синусоидальный сигнал x (t ) = A sin2πf 0 t . В идеальном случае отсчёты берутся через равные промежутки времени. Однако в реальности время момента взятия отсчёта подвержено флуктуациям из-за дрожания фронта синхросигнала (clock jitter ). Полагая, что неопределённость момента времени взятия отсчёта порядка Δt , получаем, что ошибка, обусловленная этим явлением, может быть оценена как

Легко видеть, что ошибка относительно невелика на низких частотах, однако на больших частотах она может существенно возрасти.

Эффект апертурной погрешности может быть проигнорирован, если её величина сравнительно невелика по сравнению с ошибкой квантования. Таким образом, можно установить следующие требования к дрожанию фронта сигнала синхронизации:

где q - разрядность АЦП.

Разрядность АЦП Максимальная частота входного сигнала
44,1 кГц 192 кГц 1 МГц 10 МГц 100 МГц
8 28,2 нс 6,48 нс 1,24 нс 124 пс 12,4 пс
10 7,05 нс 1,62 нс 311 пс 31,1 пс 3,11 пс
12 1,76 нс 405 пс 77,7 пс 7,77 пс 777 фс
14 441 пс 101 пс 19,4 пс 1,94 пс 194 фс
16 110 пс 25,3 пс 4,86 пс 486 фс 48,6 фс
18 27,5 пс 6,32 пс 1,21 пс 121 фс 12,1 фс
24 430 фс 98,8 фс 19,0 фс 1,9 фс 190 ас

Из этой таблицы можно сделать вывод о целесообразности применения АЦП определённой разрядности с учётом ограничений, накладываемых дрожанием фронта синхронизации (clock jitter ). Например, бессмысленно использовать прецизионный 24-битный АЦП для записи звука, если система распределения синхросигнала не в состоянии обеспечить ультрамалой неопределённости.

Частота дискретизации

Аналоговый сигнал является непрерывной функцией времени , в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T - период дискретизации) и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции . Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова-Шеннона точное восстановление возможно только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным по крайней мере от начала до конца процесса преобразования (этот интервал времени называют время преобразования ). Эта задача решается путём использования специальной схемы на входе АЦП - устройства выборки-хранения - УВХ . УВХ, как правило, хранит входное напряжение в конденсаторе , который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании - хранение. Многие АЦП, выполненные в виде интегральных микросхем содержат встроенное УВХ.

Наложение спектров (алиасинг)

Все АЦП работают путём выборки входных значений через фиксированные интервалы времени. Следовательно, выходные значения являются неполной картиной того, что подаётся на вход. Глядя на выходные значения, нет никакой возможности установить, как себя вёл входной сигнал между выборками. Если известно, что входной сигнал меняется достаточно медленно относительно частоты дискретизации, то можно предположить, что промежуточные значения между выборками находятся где-то между значениями этих выборок. Если же входной сигнал меняется быстро, то никаких предположений о промежуточных значениях входного сигнала сделать нельзя, а следовательно, невозможно однозначно восстановить форму исходного сигнала.

Если последовательность цифровых значений, выдаваемая АЦП, где-либо преобразуется обратно в аналоговую форму цифро-аналоговым преобразователем , желательно, чтобы полученный аналоговый сигнал был максимально точной копией исходного сигнала. Если входной сигнал меняется быстрее , чем делаются его отсчёты, то точное восстановление сигнала невозможно, и на выходе ЦАП будет присутствовать ложный сигнал. Ложные частотные компоненты сигнала (отсутствующие в спектре исходного сигнала) получили название alias (ложная частота, побочная низкочастотная составляющая). Частота ложных компонент зависит от разницы между частотой сигнала и частотой дискретизации. Например, синусоидальный сигнал с частотой 2 кГц, дискретизованный с частотой 1.5 кГц был бы воспроизведён как синусоида с частотой 500 Гц. Эта проблема получила название наложение частот (aliasing ).

Для предотвращения наложения спектров сигнал, подаваемый на вход АЦП, должен быть пропущен через фильтр низких частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Этот фильтр получил название anti-aliasing (антиалиасинговый) фильтр, его применение чрезвычайно важно при построении реальных АЦП.

Хотя наложение спектров в большинстве случаев является нежелательным эффектом, его можно использовать во благо. Например, благодаря этому эффекту можно обойтись без преобразования частоты вниз при оцифровке узкополосного высокочастотного сигнала (смотри смеситель). Для этого, однако, входные аналоговые каскады АЦП должны иметь значительно более высокие параметры, чем это требуется для стандартного использования АЦП на основной (видео или низшей) гармонике.

Подмешивание псевдослучайного сигнала (dither)

Некоторые характеристики АЦП могут быть улучшены путём использования методики подмешивания псевдослучайного сигнала (англ. dither ). Она заключается в добавлении к входному аналоговому сигналу случайного шума (белый шум) небольшой амплитуды. Амплитуда шума, как правило, выбирается на уровне половины МЗР. Эффект от такого добавления заключается в том, что состояние МЗР случайным образом переходит между состояниями 0 и 1 при очень малом входном сигнале (без добавления шума МЗР был бы в состоянии 0 или 1 долговременно). Для сигнала с подмешанным шумом вместо простого округления сигнала до ближайшего разряда происходит случайное округление вверх или вниз, причём среднее время, в течение которого сигнал округлён к тому или иному уровню зависит от того, насколько сигнал близок к этому уровню. Таким образом, оцифрованный сигнал содержит информацию об амплитуде сигнала с разрешающей способностью лучше, чем МЗР, то есть происходит увеличение эффективной разрядности АЦП. Негативной стороной методики является увеличение шума в выходном сигнале. Фактически, ошибка квантования размазывается по нескольким соседним отсчётам. Такой подход является более желательным, чем простое округление до ближайшего дискретного уровня. В результате использования методики подмешивания псевдослучайного сигнала мы имеем более точное воспроизведение сигнала во времени. Малые изменения сигнала могут быть восстановлены из псевдослучайных скачков МЗР путём фильтрации. Кроме того, если шум детерминирован (амплитуда добавляемого шума точно известна в любой момент времени), то его можно вычесть из оцифрованного сигнала, предварительно увеличив его разрядность, тем самым почти полностью избавиться от добавленного шума.

Звуковые сигналы очень малых амплитуд, оцифрованные без псевдослучайного сигнала, воспринимаются на слух очень искажёнными и неприятными. При подмешивании псевдослучайного сигнала истинный уровень сигнала представлен средним значением нескольких последовательных отсчётов.

Для большинства АЦП разрядность составляет от 6 до 24 бит , частота дискретизации до 1 МГц. Мега- и гигагерцовые АЦП также доступны (февраль 2002). Мегагерцовые АЦП требуются в цифровых видеокамерах , устройствах видеозахвата и цифровых TV-тюнерах для оцифровки полного видеосигнала. Коммерческие АЦП обычно имеют выходную ошибку от ±0,5 до ±1,5 МЗР.

Один из факторов увеличивающих стоимость микросхем - это количество выводов , поскольку они вынуждают делать корпус микросхемы больше, и каждый вывод должен быть присоединён к кристаллу. Для уменьшения количества выводов часто АЦП, работающие на низких частотах дискретизации, имеют последовательный интерфейс . Применение АЦП с последовательным интерфейсом зачастую позволяет увеличить плотность монтажа и создать плату с меньшей площадью.

Часто микросхемы АЦП имеют несколько аналоговых входов, подключённых внутри микросхемы к единственному АЦП через аналоговый мультиплексор . Различные модели АЦП могут включать в себя устройства выборки-хранения, инструментальные усилители или высоковольтный дифференциальный вход и другие подобные цепи.

Применение АЦП в звукозаписи

АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM -поток, который будет записан на компакт-диск .

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц . Многие люди, занятые в этой области, считают, что данный показатель избыточен и используется из чисто маркетинговых соображений (об этом свидетельствует теорема Котельникова-Шеннона). Можно сказать, что звуковой аналоговый сигнал не содержит столько информации, сколько может быть сохранено в цифровом сигнале при такой высокой частоте дискретизации, и зачастую для Hi-Fi (класс аппаратуры) аудиотехники используется частота дискретизации 44.1 кГц (стандартная для CD) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания.

Аналого-цифровые преобразователи для звукозаписи имеют широкий диапазон цен - от $100 до $10 000 и выше за двухканальный АЦП.

АЦП для звукозаписи, используемые на ЭВМ , бывают внутренние и внешние. Также существует бесплатный программный комплекс PulseAudio для Linux, позволяющий использовать вспомогательную(-ые) ЭВМ как внешние ЦАП/АЦП для основной ЭВМ с гарантированным временем запаздывания.

Другие применения

Аналого-цифровое преобразование используется везде, где требуется обрабатывать, хранить или передавать сигнал в цифровой форме.

  • Быстрые видео АЦП используются, например, в TV-тюнерах .
  • Медленные встроенные 8, 10, 12 или 16-битные АЦП часто входят в состав микроконтроллеров .
  • Очень быстрые АЦП необходимы в цифровых осциллографах .
  • Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика .
  • АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора .
  • Так же сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС

Примечания

См. также

Ссылки

  • Вольфганг Райс. Устройство и принципы действия аналого-цифровых преобразователей различных типов WBC GmbH Журнал «Компоненты и технологии» № 3 2005
  • Аналого-цифровые преобразователи, теория и принципы работы с сайта Рынок Микроэлектроники

Разрешение АЦП - минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП - связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных АЦП измеряется в битах , в троичных АЦП измеряется в тритах . Например, двоичный 8-разрядный АЦП способен выдать 256 дискретных значений (0…255), поскольку 2 8 = 256 {\displaystyle 2^{8}=256} , троичный 8-разрядный АЦП способен выдать 6561 дискретное значение, поскольку 3 8 = 6561 {\displaystyle 3^{8}=6561} .

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

  • Пример 1
    • Диапазон входных значений = от 0 до 10 вольт
    • Разрядность двоичного АЦП 12 бит: 2 12 = 4096 уровней квантования
    • Разрешение двоичного АЦП по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ
    • Разрядность троичного АЦП 12 трит: 3 12 = 531 441 уровней квантования
    • Разрешение троичного АЦП по напряжению: (10-0)/531441 = 0,0188 мВ = 18,8 мкВ
  • Пример 2
    • Диапазон входных значений = от −10 до +10 вольт
    • Разрядность двоичного АЦП 14 бит: 2 14 = 16384 уровней квантования
    • Разрешение двоичного АЦП по напряжению: (10-(-10))/16384 = 20/16384 = 0,00122 вольт = 1,22 мВ
    • Разрядность троичного АЦП 14 трит: 3 14 = 4 782 969 уровней квантования
    • Разрешение троичного АЦП по напряжению: (10-(-10))/4782969 = 0,00418 мВ = 4,18 мкВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (англ. effective number of bits, ENOB ), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение сигнал/шум входного сигнала должно быть примерно 6 дБ на каждый бит разрядности (6 дБ соответствует двукратному изменению уровня сигнала).

Типы преобразования

По способу применяемых алгоритмов АЦП делят на:

  • Последовательного приближения
  • Последовательные с сигма-дельта-модуляцией
  • Параллельные одноступенчатые
  • Параллельные двух- и более ступенчатые (конвейерные)

АЦП первых двух типов подразумевают обязательное применение в своем составе устройства выборки и хранения (УВХ). Это устройство служит для запоминания аналогового значения сигнала на время, необходимое для выполнения преобразования. Без него результат преобразования АЦП последовательного типа будет недостоверным. Выпускаются интегральные АЦП последовательного приближения, как содержащие в своем составе УВХ, так и требующие внешнее УВХ [ ] .

Линейные АЦП

Большинство АЦП считаются линейными, хотя аналого-цифровое преобразование, по сути, является нелинейным процессом (поскольку операция отображения непрерывного пространства в дискретное - операция нелинейная).

Термин линейный применительно к АЦП означает, что диапазон входных значений, отображаемый на выходное цифровое значение, связан по линейному закону с этим выходным значением, то есть выходное значение k достигается при диапазоне входных значений от

m (k + b ) m (k + 1 + b ),

где m и b - некоторые константы. Константа b , как правило, имеет значение 0 или −0.5. Если b = 0, АЦП называют квантователь с ненулевой ступенью (mid-rise ), если же b = −0,5, то АЦП называют квантователь с нулём в центре шага квантования (mid-tread ).

Нелинейные АЦП

Важным параметром, описывающим нелинейность, является интегральная нелинейность (INL) и дифференциальная нелинейность (DNL).

Апертурная погрешность (джиттер)

Пусть мы оцифровываем синусоидальный сигнал x (t) = A sin ⁡ 2 π f 0 t {\displaystyle x(t)=A\sin 2\pi f_{0}t} . В идеальном случае отсчёты берутся через равные промежутки времени. Однако в реальности время момента взятия отсчёта подвержено флуктуациям из-за дрожания фронта синхросигнала (clock jitter ). Полагая, что неопределённость момента времени взятия отсчёта порядка Δ t {\displaystyle \Delta t} , получаем, что ошибка, обусловленная этим явлением, может быть оценена как

E a p ≤ | x ′ (t) Δ t | ≤ 2 A π f 0 Δ t {\displaystyle E_{ap}\leq |x"(t)\Delta t|\leq 2A\pi f_{0}\Delta t} .

Легко видеть, что ошибка относительно невелика на низких частотах, однако на больших частотах она может существенно возрасти.

Эффект апертурной погрешности может быть проигнорирован, если её величина сравнительно невелика по сравнению с ошибкой квантования. Таким образом, можно установить следующие требования к дрожанию фронта сигнала синхронизации:

Δ t < 1 2 q π f 0 {\displaystyle \Delta t<{\frac {1}{2^{q}\pi f_{0}}}} ,

где q {\displaystyle q} - разрядность АЦП.

Разрядность АЦП Максимальная частота входного сигнала
44,1 кГц 192 кГц 1 МГц 10 МГц 100 МГц
8 28,2 нс 6,48 нс 1,24 нс 124 пс 12,4 пс
10 7,05 нс 1,62 нс 311 пс 31,1 пс 3,11 пс
12 1,76 нс 405 пс 77,7 пс 7,77 пс 777 фс
14 441 пс 101 пс 19,4 пс 1,94 пс 194 фс
16 110 пс 25,3 пс 4,86 пс 486 фс 48,6 фс
18 27,5 пс 6,32 пс 1,21 пс 121 фс 12,1 фс
24 430 фс 98,8 фс 19,0 фс 1,9 фс 190 ас

Из этой таблицы можно сделать вывод о целесообразности применения АЦП определённой разрядности с учётом ограничений, накладываемых дрожанием фронта синхронизации (clock jitter ). Например, бессмысленно использовать прецизионный 24-битный АЦП для записи звука, если система распределения синхросигнала не в состоянии обеспечить ультрамалой неопределённости.

Вообще качество тактового сигнала чрезвычайно важно не только по этой причине. Например, из описания микросхемы AD9218 (Analog Devices):

Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer. Any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-to-digital output.

То есть любой высокоскоростной АЦП крайне чувствителен к качеству оцифровывающей тактовой частоты, подаваемой пользователем. Схема выборки и хранения , по сути, является смесителем (перемножителем). Любой шум, искажения, или дрожание фазы тактовой частоты смешиваются с полезным сигналом и поступают на цифровой выход.

Частота дискретизации

Аналоговый сигнал является непрерывной функцией времени , в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T - период дискретизации), и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции . Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова - Шеннона точное восстановление возможно, только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным, по крайней мере, от начала до конца процесса преобразования (этот интервал времени называют время преобразования ). Эта задача решается путём использования специальной схемы на входе АЦП - устройства выборки-хранения (УВХ). УВХ, как правило, хранит входное напряжение на конденсаторе , который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании - хранение. Многие АЦП, выполненные в виде интегральных микросхем , содержат встроенное УВХ.

Наложение спектров (алиасинг)

Все АЦП работают путём выборки входных значений через фиксированные интервалы времени. Следовательно, выходные значения являются неполной картиной того, что подаётся на вход. Глядя на выходные значения, нет никакой возможности установить, как вёл себя входной сигнал между выборками. Если известно, что входной сигнал меняется достаточно медленно относительно частоты дискретизации, то можно предположить, что промежуточные значения между выборками находятся где-то между значениями этих выборок. Если же входной сигнал меняется быстро, то никаких предположений о промежуточных значениях входного сигнала сделать нельзя, а следовательно, невозможно однозначно восстановить форму исходного сигнала.

Если последовательность цифровых значений, выдаваемая АЦП, где-либо преобразуется обратно в аналоговую форму цифро-аналоговым преобразователем , желательно, чтобы полученный аналоговый сигнал был максимально точной копией исходного сигнала. Если входной сигнал меняется быстрее, чем делаются его отсчёты, то точное восстановление сигнала невозможно, и на выходе ЦАП будет присутствовать ложный сигнал. Ложные частотные компоненты сигнала (отсутствующие в спектре исходного сигнала) получили название alias (ложная частота, побочная низкочастотная составляющая). Частота ложных компонент зависит от разницы между частотой сигнала и частотой дискретизации. Например, синусоидальный сигнал с частотой 2 кГц, дискретизованный с частотой 1.5 кГц, был бы воспроизведён как синусоида с частотой 500 Гц. Эта проблема получила название наложение частот (aliasing ).

Для предотвращения наложения спектров сигнал, подаваемый на вход АЦП, должен быть пропущен через фильтр нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Этот фильтр получил название anti-aliasing (антиалиасинговый) фильтр, его применение чрезвычайно важно при построении реальных АЦП.

Вообще, применение аналогового входного фильтра интересно не только по этой причине. Казалось бы, цифровой фильтр, который обычно применяется после оцифровки, имеет несравненно лучшие параметры. Но, если в сигнале присутствуют компоненты, значительно более мощные, чем полезный сигнал, и достаточно далеко отстоящие от него по частоте, чтобы быть эффективно подавленными аналоговым фильтром, такое решение позволяет сохранить динамический диапазон АЦП: если помеха на 10 дБ сильнее сигнала, на неё впустую будет тратиться, в среднем, три бита разрядности.

Хотя наложение спектров в большинстве случаев является нежелательным эффектом, его можно использовать во благо. Например, благодаря этому эффекту можно обойтись без преобразования частоты вниз при оцифровке узкополосного высокочастотного сигнала (смотри смеситель). Для этого, однако, входные аналоговые каскады АЦП должны иметь значительно более высокие параметры, чем это требуется для стандартного использования АЦП на основной (видео или низшей) гармонике. Также для этого необходимо обеспечить эффективную фильтрацию внеполосных частот до АЦП, так как после оцифровки нет никакой возможности идентифицировать и/или отфильтровать большинство из них.

Подмешивание псевдослучайного сигнала (dither)

Некоторые характеристики АЦП могут быть улучшены путём использования методики подмешивания псевдослучайного сигнала (англ. dither ). Она заключается в добавлении к входному аналоговому сигналу случайного шума (белый шум) небольшой амплитуды. Амплитуда шума, как правило, выбирается на уровне половины МЗР. Эффект от такого добавления заключается в том, что состояние МЗР случайным образом переходит между состояниями 0 и 1 при очень малом входном сигнале (без добавления шума МЗР был бы в состоянии 0 или 1 долговременно). Для сигнала с подмешанным шумом вместо простого округления сигнала до ближайшего разряда происходит случайное округление вверх или вниз, причём среднее время, в течение которого сигнал округлён к тому или иному уровню, зависит от того, насколько сигнал близок к этому уровню. Таким образом, оцифрованный сигнал содержит информацию об амплитуде сигнала с разрешающей способностью лучше, чем МЗР, то есть происходит увеличение эффективной разрядности АЦП. Негативной стороной методики является увеличение шума в выходном сигнале. Фактически ошибка квантования размазывается по нескольким соседним отсчётам. Такой подход является более желательным, чем простое округление до ближайшего дискретного уровня. В результате использования методики подмешивания псевдослучайного сигнала мы имеем более точное воспроизведение сигнала во времени. Малые изменения сигнала могут быть восстановлены из псевдослучайных скачков МЗР путём фильтрации. Кроме того, если шум детерминирован (амплитуда добавляемого шума точно известна в любой момент времени), то его можно вычесть из оцифрованного сигнала, предварительно увеличив его разрядность, тем самым почти полностью избавиться от добавленного шума.

Звуковые сигналы очень малых амплитуд, оцифрованные без псевдослучайного сигнала, воспринимаются на слух очень искажёнными и неприятными. При подмешивании псевдослучайного сигнала истинный уровень сигнала представлен средним значением нескольких последовательных отсчётов.

Типы АЦП

Ниже перечислены основные способы построения электронных АЦП:

  • Параллельные АЦП прямого преобразования , полностью параллельные АЦП, содержат по одному компаратору на каждый дискретный уровень входного сигнала. В любой момент времени только компараторы, соответствующие уровням ниже уровня входного сигнала, выдают на своём выходе сигнал превышения. Сигналы со всех компараторов поступают либо прямо в параллельный регистр, тогда обработка кода осуществляется программно, либо на аппаратный логический шифратор , аппаратно генерирующий нужный цифровой код в зависимости от кода на входе шифратора. Данные с шифратора фиксируются в параллельном регистре. Частота дискретизации параллельных АЦП, в общем случае, зависит от аппаратных характеристик аналоговых и логических элементов, а также от требуемой частоты выборки значений. Параллельные АЦП прямого преобразования - самые быстрые, но обычно имеют разрешение не более 8 бит, так как влекут за собой большие аппаратные затраты ( 2 n − 1 = 2 8 − 1 = 255 {\displaystyle 2^{n}-1=2^{8}-1=255} компараторов). АЦП этого типа имеют очень большой размер кристалла микросхемы , высокую входную ёмкость , и могут выдавать кратковременные ошибки на выходе. Часто используются для видео или других высокочастотных сигналов, а также широко применяются в промышленности для отслеживания быстро изменяющихся процессов в реальном времени.
  • Параллельно-последовательные АЦП прямого преобразования , частично последовательные АЦП, сохраняя высокое быстродействие позволяют значительно уменьшить количество компараторов (до k ⋅ (2 n / k − 1) {\displaystyle k\cdot (2^{n/k}-1)} , где n - число битов выходного кода, а k - число параллельных АЦП прямого преобразования), требующееся для преобразования аналогового сигнала в цифровой (при 8-ми битах и 2-х АЦП требуется 30 компараторов). Используют два или более (k) шага-поддиапазона. Содержат в своем составе k параллельных АЦП прямого преобразования. Второй, третий и т. д. АЦП служат для уменьшения ошибки квантования первого АЦП путём оцифровки этой ошибки. На первом шаге производится грубое преобразование (с низким разрешением). Далее определяется разница между входным сигналом и аналоговым сигналом, соответствующим результату грубого преобразования (со вспомогательного ЦАП, на который подаётся грубый код). На втором шаге найденная разница подвергается преобразованию, и полученный код объединяется с грубым кодом для получения полного выгодного цифрового значения. АЦП этого типа медленнее параллельных АЦП прямого преобразования, имеют высокое разрешение и небольшой размер корпуса. Для увеличения скорости выходного оцифрованного потока данных в параллельно-последовательных АЦП прямого преобразования применяется конвейерная работа параллельных АЦП.
  • Конвейерная работа АЦП , применяется в параллельно-последовательных АЦП прямого преобразования, в отличие от обычного режима работы параллельно-последовательных АЦП прямого преобразования, в котором данные передаются после полного преобразования, при конвейерной работе данные частичных преобразований передаются по мере готовности до окончания полного преобразования.
  • Последовательные АЦП прямого преобразования , полностью последовательные АЦП (k=n), медленнее параллельных АЦП прямого преобразования и немного медленнее параллельно-последовательных АЦП прямого преобразования, но ещё больше (до n ⋅ (2 n / n − 1) = n ⋅ (2 1 − 1) = n {\displaystyle n\cdot (2^{n/n}-1)=n\cdot (2^{1}-1)=n} , где n - число битов выходного кода, а k - число параллельных АЦП прямого преобразования) уменьшают количество компараторов (при 8-ми битах требуется 8 компараторов). Троичные АЦП этого вида приблизительно в 1,5 раза быстрее соизмеримых по числу уровней и аппаратным затратам двоичных АЦП этого же вида .
  • или АЦП с поразрядным уравновешиванием содержит компаратор, вспомогательный ЦАП и регистр последовательного приближения. АЦП преобразует аналоговый сигнал в цифровой за N шагов, где N - разрядность АЦП. На каждом шаге определяется по одному биту искомого цифрового значения, начиная от СЗР и заканчивая МЗР. Последовательность действий по определению очередного бита заключается в следующем. На вспомогательном ЦАП выставляется аналоговое значение, образованное из битов, уже определённых на предыдущих шагах; бит, который должен быть определён на этом шаге, выставляется в 1, более младшие биты установлены в 0. Полученное на вспомогательном ЦАП значение сравнивается с входным аналоговым значением. Если значение входного сигнала больше значения на вспомогательном ЦАП, то определяемый бит получает значение 1, в противном случае 0. Таким образом, определение итогового цифрового значения напоминает двоичный поиск . АЦП этого типа обладают одновременно высокой скоростью и хорошим разрешением. Однако при отсутствии устройства выборки хранения погрешность будет значительно больше (представьте, что после оцифровки самого большого разряда сигнал начал меняться).
  • (англ. delta-encoded ADC ) содержат реверсивный счётчик , код с которого поступает на вспомогательный ЦАП. Входной сигнал и сигнал со вспомогательного ЦАП сравниваются на компараторе. Благодаря отрицательной обратной связи с компаратора на счётчик код на счётчике постоянно меняется так, чтобы сигнал со вспомогательного ЦАП как можно меньше отличался от входного сигнала. По прошествии некоторого времени разница сигналов становится меньше, чем МЗР, при этом код счётчика считывается как выходной цифровой сигнал АЦП. АЦП этого типа имеют очень большой диапазон входного сигнала и высокое разрешение, но время преобразования зависит от входного сигнала, хотя и ограничено сверху. В худшем случае время преобразования равно T max =(2 q)/f с , где q - разрядность АЦП, f с - частота тактового генератора счётчика. АЦП дифференциального кодирования обычно являются хорошим выбором для оцифровки сигналов реального мира, так как большинство сигналов в физических системах не склонны к скачкообразным изменениям. В некоторых АЦП применяется комбинированный подход: дифференциальное кодирование и последовательное приближение; это особенно хорошо работает в случаях, когда известно, что высокочастотные компоненты в сигнале относительно невелики.
  • АЦП сравнения с пилообразным сигналом (некоторые АЦП этого типа называют Интегрирующие АЦП , также к ним относятся АЦП последовательного счета) содержат генератор пилообразного напряжения (в АЦП последовательного счета генератор ступенчатого напряжения, состоящий из счетчика и ЦАП), компаратор и счётчик времени. Пилообразный сигнал линейно нарастает от нижнего до верхнего уровня, затем быстро спадает до нижнего уровня. В момент начала нарастания запускается счётчик времени. Когда пилообразный сигнал достигает уровня входного сигнала, компаратор срабатывает и останавливает счётчик; значение считывается со счётчика и подаётся на выход АЦП. Данный тип АЦП является наиболее простым по структуре и содержит минимальное число элементов. Вместе с тем простейшие АЦП этого типа обладают довольно низкой точностью и чувствительны к температуре и другим внешним параметрам. Для увеличения точности генератор пилообразного сигнала может быть построен на основе счётчика и вспомогательного ЦАП, однако такая структура не имеет никаких других преимуществ по сравнению с АЦП последовательного приближения и АЦП дифференциального кодирования .
  • АЦП с уравновешиванием заряда (к ним относятся АЦП с двухстадийным интегрированием, АЦП с многостадийным интегрированием и некоторые другие) содержат , компаратор , интегратор тока , тактовый генератор и счётчик импульсов. Преобразование происходит в два этапа (двухстадийное интегрирование ). На первом этапе значение входного напряжения преобразуется в ток (пропорциональный входному напряжению), который подаётся на интегратор тока, заряд которого изначально равен нулю. Этот процесс длится в течение времени TN , где T - период тактового генератора, N - константа (большое целое число, определяет время накопления заряда). По прошествии этого времени вход интегратора отключается от входа АЦП и подключается к генератору стабильного тока. Полярность генератора такова, что он уменьшает заряд, накопленный в интеграторе. Процесс разряда длится до тех пор, пока заряд в интеграторе не уменьшится до нуля. Время разряда измеряется путём счёта тактовых импульсов от момента начала разряда до достижения нулевого заряда на интеграторе. Посчитанное количество тактовых импульсов и будет выходным кодом АЦП. Можно показать, что количество импульсов n , посчитанное за время разряда, равно: n =U вх N (RI 0 ) −1 , где U вх - входное напряжение АЦП, N - число импульсов этапа накопления (определено выше), R - сопротивление резистора, преобразующего входное напряжение в ток, I 0 - значение тока от генератора стабильного тока, разряжающего интегратор на втором этапе. Таким образом, потенциально нестабильные параметры системы (прежде всего, ёмкость конденсатора интегратора) не входят в итоговое выражение. Это является следствием двухстадийности процесса: погрешности, введённые на первом и втором этапах, взаимно вычитаются. Не предъявляются жёсткие требования даже к долговременной стабильности тактового генератора и напряжению смещения компаратора: эти параметры должны быть стабильны лишь кратковременно, то есть в течение каждого преобразования (не более 2TN ). Фактически принцип двухстадийного интегрирования позволяет напрямую преобразовывать отношение двух аналоговых величин (входного и образцового тока) в отношение числовых кодов (n и N в терминах, определённых выше) практически без внесения дополнительных ошибок. Типичная разрядность АЦП этого типа составляет от 10 до 18 [ ] двоичных разрядов. Дополнительным достоинством является возможность построения преобразователей, нечувствительных к периодическим помехам (например, помеха от сетевого питания) благодаря точному интегрированию входного сигнала за фиксированный временной интервал. Недостатком данного типа АЦП является низкая скорость преобразования. АЦП с уравновешиванием заряда используются в измерительных приборах высокой точности.
  • АЦП с промежуточным преобразованием в частоту следования импульсов . Сигнал с датчика проходит через преобразователь уровня, а затем через преобразователь напряжение-частота . Таким образом на вход непосредственно логической схемы поступает сигнал, характеристикой которого является лишь частота импульсов. Логический счётчик принимает эти импульсы на вход в течение времени выборки, таким образом, выдавая к её окончанию кодовую комбинацию, численно равную количеству импульсов, пришедших на преобразователь за время выборки. Такие АЦП довольно медленны и не очень точны, но тем не менее очень просты в исполнении и поэтому имеют низкую стоимость.
  • Сигма-дельта -АЦП (называемые также дельта-сигма АЦП) производит аналого-цифровое преобразование с частотой дискретизации, во много раз превышающей требуемую, и путём фильтрации оставляет в сигнале только нужную спектральную полосу.

Неэлектронные АЦП обычно строятся на тех же принципах.

Оптические АЦП

Существуют оптические методы [ ] преобразования электрического сигнала в код. Они основаны на способности некоторых веществ изменять показатель преломления под действием электрического поля. При этом проходящий через вещество луч света изменяет свою скорость или угол отклонения на границе этого вещества в соответствии с изменением показателя преломления. Существует несколько способов регистрации этих изменений. Например, линейка фотоприемников регистрирует отклонение луча, переводя его в дискретный код. Различные интерференционные схемы с участием задержанного луча позволяют оценивать изменения сигнала или строить компараторы электрических величин.

Оптические АЦП могут иметь очень высокое быстродействие.

Микросхемы АЦП

Для большинства АЦП разрядность составляет от 6 до 24 бит , частота дискретизации до 1 МГц. Мега- и гигагерцовые АЦП также доступны (12-битный 2-канальный 1 GSPS АЦП AD9234 по состоянию на декабрь 2015 г. стоил $238). Мегагерцовые АЦП требуются в цифровых видеокамерах , устройствах видеозахвата и цифровых ТВ-тюнерах для оцифровки полного видеосигнала. Коммерческие АЦП обычно имеют выходную ошибку от ±0,5 до ±1,5 МЗР.

Один из факторов, увеличивающих стоимость микросхем , - это количество выводов, поскольку они вынуждают делать корпус микросхемы больше, и каждый вывод должен быть присоединён к кристаллу. Для уменьшения количества выводов часто АЦП, работающие на низких частотах дискретизации, имеют последовательный интерфейс . Применение АЦП с последовательным интерфейсом зачастую позволяет увеличить плотность монтажа и создать плату с меньшей площадью.

Часто микросхемы АЦП имеют несколько аналоговых входов, подключённых внутри микросхемы к единственному АЦП через аналоговый мультиплексор . Различные модели АЦП могут включать в себя устройства выборки-хранения, инструментальные усилители или высоковольтный дифференциальный вход и другие подобные цепи.

Применение АЦП в звукозаписи

АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM -поток, который будет записан на информационный носитель.

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц , и даже до 384 кГц при 32 bit. Это оправдано, так как новейшие исследования показали что человек слышит до 60 кГц, а не до 20 кГц как считалось ранее,и чтобы записать без искажений сигналы до 60 кГц, нужна повышенная частота дискретизации. К тому же известно, что спектральный состав звука "трубы с сурдинкой" идет выше 20 кГц, уровень не падает ниже уровня шумов вплоть до 100 кГц, подобный результат получается и для инструментов из других музыкальных семейств, например, скрипка и гобой показывают наличие энергии выше 40 кГц, ударные генерируют самое большое количество ультразвука. Удар в тарелки показал 40 % энергии выше 20 кГц, а треугольник, как оказалось, довольно сильно звучит на 100 кГц. Для Hi-Fi -аудиотехники в настоящее время используется частота дискретизации 44,1 кГц (стандартная для компакт-дисков) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания. Японские исследователи во главе с Т. Оохаши провели эксперименты с широкополосными записями с частотами до 60 кГц, причем супертвитер (ВЧ-излучатель с расширенным в сторону высоких диапазоном) можно было включать и отключать. Отслеживая активность деятельности мозга испытуемых и анализируя субъективные оценки при прослушивании вслепую, они пришли к выводу, что слушатели действительно реагировали на ультразвуковые составляющие музыки. В свободной продаже появились широкополосные акустические системы с верхней частотой до 80 кГц.

Также избыточная полоса пропускания АЦП позволяет соответственно снизить амплитудные искажения, неизбежно возникающие из-за наличия схемы выборки и хранения. Такие искажения (нелинейность АЧХ) имеют вид sin(x)/x [ ] и относятся ко всей полосе пропускания, поэтому чем меньшая часть полосы пропускания (по частоте) используется (занята полезным сигналом), тем меньше данные искажения.

Аналого-цифровые преобразователи для звукозаписи имеют широкий диапазон цен - от 5 до 10 тыс. долл. и выше за двухканальный АЦП.

АЦП для звукозаписи, используемые в компьютерах, бывают внутренние и внешние. Также существует свободный программный ЦОС в качестве демодулятора .

  • Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в
  • Аналого-цифровой преобразователь - это устройство, предназначенное для преобразования непрерывно-изменяющейся во времени физической величины в эквивалентные ей значения цифровых кодов. В качестве аналоговой величины может быть напряжение, ток, угловое перемещение, давление газа и т.д.

    Процесс аналого-цифрового преобразования предполагает последовательное выполнение следующих операций (рис.13.5):

    Выборку значений исходной аналоговой величины в некоторые заданные моменты времени, т.е. дискретизация сигнала во времени,

    Квантование (округление преобразуемой величины до некоторых известных величин) полученной в дискретные моменты времени значения аналоговой величины по уровню,

    Кодирование - замена найденных квантовых значений некоторыми числовыми кодами .

    Рис. 13.5. Принцип аналого-цифрового преобразования.

    Погрешность интегрирующего АЦП определяется, в основном, изменением наклона пилообразного напряжения, которое определяется постоянной времени RC интегратора (генератора пилообразного напряжения). Под воздействием внешних дестабилизирующих факторов, особенно температуры, постоянная времени, а следовательно, и наклон пилообразного напряжения меняется, что приводит к значительным погрешностям преобразования. Поэтому в настоящее время для построения интегрирующих АЦП используют принцип двойного интегрирования.

    Принцип работы АЦП двойного интегрирования заключается в том, что сначала в течении некоторого фиксированного временного интервала Т 1 интегрируется аналоговая преобразуемая величина U x , а затем интегрируется эталонное (опорное) напряжение противоположной полярности U оп. Временной интервал Т 2 пропорционален преобразуемой величине U x .

    Рис 13.11. Структурная схема АЦП двойного интегрирования (а) и временная диаграмма его работы (б) Действительно в течении интервала времени Т 1 напряжение на выходе интегратора изменяется по линейному закону:

    В течении интервала времени Т 2 выходное напряжение на выходе интегратора изменяется от Uвых.инт.мах до 0, т.е.

    Следовательно,

    Таким образом интервал времени Т 2 зависит от постоянной величины Т 1 /U оп и переменной U х и не зависит от параметров интегратора. В этом можно убедиться на графике, приведенном на рис.13.12.

    Рис 13.12. Напряжение на выходе интегратора при постоянной времени τ 1 = R 1 * C 1 (1) и при τ 2 = R 2 * C 2 (1) АЦП двойного интегрирования обеспечивает высокую точность преобразования в условиях промышленных помех в широком интервале температур и широко используется в измерительной технике и автоматизированных системах управления.

    Например, основу всех мультиметров составляет АЦП двойного интегрирования, выполненная на микросхеме К572ПВ2 или К572ПВ5. ИС практически одинаковые, но первая работает на светодиодные индикаторы, а вторая - на жидкокристаллические индикаторы.

    Микросхема К572ПВ2 совместно с источником опорного напряжения, несколькими резисторами и конденсаторами выполняет функции АЦП двойного интегрирования с автоматической установкой нуля ОУ и определением полярности входного сигнала.

    Основные технические параметры ИС:

    Разрядность - 3,5 десятичных разряда,

    Входное сопротивление - 50Мом,

    Входное напряжение - ±1,999Uоп(В),

    Быстродействие - (2-9)Гц,

    Потребляемый ток - 1,8 мА

    Напряжение питания - 9В.

    Рис 13.13. ИС К572ПВ2 (а) и выходное напряжение на выходе генератора (б)

    Работа ИС происходит под воздействием тактовых импульсов f ти внутреннего генератора импульсов в три этапа:

    На первом этапе Т 1 , длительностью 4000 периодов f ти, происходит интегрирование напряжения U x ,

    На втором этапе, длительностью от 0 до 8000 периодов, f ти происходит интегрирование опорного напряжения U оп и

    На третьем этапе, длительностью от 4000 до 12000 периодов f ти, происходит автоматическая установка нуля ОУ.

    Весь цикл преобразования занимает 16000 тактов.

    Многоканальные АЦП широко используются для преобразования нескольких однотипных аналоговых величин. Такие АЦП включают в себя аналоговый коммутатор и один из рассмотренных выше АЦП.

    Рис 13.14. Многоканальный АЦП

    Преобразование происходит последовательно параметр за параметром. Аналоговый коммутатор поочередно подключает на вход АЦП через усилитель все входные сигналы.

    В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

    Введение

    В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.


    Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

    Основные характеристики АЦП

    АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

    Типы АЦП

    Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

    • АЦП параллельного преобразования (прямого преобразования, flash ADC)
    • АЦП последовательного приближения (SAR ADC)
    • дельта-сигма АЦП (АЦП с балансировкой заряда)
    Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

    Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

    Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

    Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

    Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

    АЦП прямого преобразования

    АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

    Архитектура АЦП прямого преобразования изображена на рис. 1

    Рис. 1. Структурная схема АЦП прямого преобразования

    Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

    Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

    Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

    Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

    АЦП последовательного приближения

    Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

    1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

    2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

    3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

    Рис. 2. Структурная схема АЦП последовательного приближения.

    Таким образом, АЦП последовательного приближения состоит из следующих узлов:

    1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

    2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

    3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

    4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

    Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

    Дельта-сигма АЦП

    И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

    Рис.3. Структурная схема сигма-дельта АЦП.

    Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

    Рис. 4. Сигма-дельта АЦП как следящая система

    Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к .

    На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

    Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

    Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

    Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

    Рис. 6. Структурная схема сигма-дельта модулятора

    Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

    Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

    Y(s) = X(s)/(s+1) + E(s)s/(s+1)

    То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

    Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

    Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

    Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

    Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

    Немного истории

    Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

    Рис. 8. Первый патент на АЦП

    Рис. 9. АЦП прямого преобразования (1975 г.)

    Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

    На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

    Рис. 10. АЦП прямого преобразования (1970 г.)

    Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

    Литература

    W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial.