Типы сигналов. Виды (типы) сигналов — аналоговый Что может использоваться в качестве сигнала

Контрольная работа

Типы сигналов


Введение

сигнал электронный датчик

Электроника - наука, занимающаяся изучением взаимодействия электронов или других заряженных частиц с электромагнитными полями и разработкой методов создания электронных приборов и устройств, в которых это взаимодействие используется для передачи, хранения и передачи информации.

Результаты изучения электронных процессов и явлений, а также исследование и разработка методов создания электронных приборов и устройств обуславливают развитие электронной техники по двум направлениям. Первое из них связано с созданием технологий производства и промышленным выпуском электронных приборов различного назначения. Второе направление связано с созданием на основе этих приборов аппаратуры для решения различного рода задач, связанных с передачей, приемом и преобразованием информации в области информатики, вычислительной техники, систем автоматизации технологических процессов и т.д.

Электроника имеет короткую, но богатую событиями историю. Первый ее период связан с простейшими передатчиками и способными воспринимать их сигналы приемниками. Затем наступила эпоха вакуумных ламп. С середины 50-х годов начался новый период в развитии электроники, связанный с появлением полупроводниковых элементов, а затем малых и больших интегральных схем.

Современный этап развития электроники характеризуется появлением микропроцессорных сверхбольших интегральных схем, цифровых сигнальных процессоров, программируемых логических интегральных схем, позволяющих решать задачи обработки сигналов при высоких технико-экономических показателях. Цифровая электроника, преобразившая системы сбора, обработки и передачи информации, немыслима без аналоговых технологий. Именно аналоговые устройства во многом определяют характеристики этих систем.

Электроника исследует вопросы передачи, приема и преобразования информации на основе электромагнитных явлений. Применительно к электронике наряду с передачей сообщений от человека к человеку целесообразно также рассматривать обмен сведениями между человеком и автоматом и между автоматами.

Имеется множество определений понятия информации от наиболее общего философского (информация есть отражение реального мира) до практического (информация есть все сведения, являющиеся объектом хранения, передачи, преобразования).

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).

Практически любая электронная система имеет целью своего функционирования то или иное преобразование энергии или преобразование информации. Задачей любой электронной системы управления в самом общем смысле является обработка информации о текущем режиме работы управляемого объекта и выработка на основе этого управляющих сигналов с целью приближения текущего режима работы объекта к заданному режиму. Под обработкой информации в данном случае подразумевается решение тем или иным способом уравнений состояния системы.

Представленный на рис 1.1 объект - это реальный физический объект, многочисленные свойства которого характеризуются различными физическими величинами (ФВ). Он находится в многосторонних и сложных связях с другими объектами. Из всего многообразия этих связей на рис. 1.1 показаны подлежащие измерению входные ФВ Х и выходными ФВ Y, характеризующие состояние объекта. Датчики (первичные преобразователи) обеспечивают преобразование ФВ Х и Y, имеющих в большинстве случаев неэлектрическую природу, в электрические сигналы с сохранением необходимой информации о возмущающих воздействиях и состоянии объекта.

Устройство первичной обработки (УПО) сигналов является неотъемлемой частью системы. Оно обеспечивает сопряжение датчиков с последующими электронными устройствами, осуществляющими предварительную обработку измеряемых физических величин. Как правило, на него возлагаются следующие функции:

·усиление выходных сигналов первичных преобразователей;

·нормализация аналоговых сигналов, т.е. приведение границ шкалы первичного непрерывного сигнала к одному из стандартных диапазонов входного сигнала аналого-цифрового преобразователя измерительного канала (наиболее распространены диапазоны от 0 до 5 В, от -5 В до 5 В и от 0 до 10 В;

·предварительная низкочастотная фильтрация, т.е. ограничение полосы частот первичного непрерывного сигнала с целью снижения влияния на результат измерения помех различного происхождения;

·обеспечение гальванической изоляции между источником аналогового или дискретного сигнала и измерительным и / или статусным каналами системы. В равной степени это относится к изоляции между каналами дискретного вывода системы и управляемым силовым оборудованием. Помимо собственно защиты выходных и входных цепей гальваническая изоляция позволяет снизить влияние на систему помех по цепям заземления за счет полного разделения земли вычислительной системы и земли контролируемого оборудования. Отсутствие гальванической изоляции допускается только в технически обоснованных случаях.

Выходные сигналы устройства первичной обработки преобразуется в цифровую форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается цифровым сигнальным процессором. После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Процессор обрабатывает исходные данные, характеризующие возмущающие воздействия и состояние объекта. Алгоритм обработки определяется объектом измерения, задачей измерения, заключающейся в определении значений выбранных (измеряемых) физических величин (ФВ) с требуемой точностью в заданных условиях, и основными характеристиками измерений.


1. Сигналы

сигнал электронный датчик

Понятие сигнала является одним из основных понятий электроники. Сигнал есть существующий в системе физический процесс, имеющий множество состояний, которые он принимает в соответствии с внешними воздействиями на эту систему. Основным свойством сигнала является то, что он несет информацию о воздействии на эту систему.

Поскольку реальные физические процессы протекают во времени, то в качестве математической модели сигнала, представляющего эти процессы, используют функции времени, отражающие изменения физических процессов.

Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).


. Классификация сигналов


По роли в передачи конкретной информации сигналы могут быть разделены на полезные и мешающие (помехи). Полезные сигналы переносят заданную информацию, а помехи искажают её, хотя, может быть, и переносят другую информацию.

По степени определенности ожидаемых значений сигнала все сигналы можно разделить на детерминированные сигналы и случайные сигналы. Детерминированным называется сигнал, значение которого в любой момент времени может быть точно определено. Детерминированные сигналы могут быть периодическими и непериодическими.

Периодическим называется сигнал, для которого выполняется условие
s(t) = s (t + kT), где k - любое целое число, Т - период, являющийся конечным отрезком времени. Пример периодического сигнала - гармоническое колебание. .


Здесь Um, T, f0, w0, и j0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

К сложным периодическим сигналам можно отнести импульсные сигналы различной формы (электрические импульсы)

Электрический импульс - это кратковременное скачкообразное изменение электрического напряжения или силы тока.

Электрические импульсы тока или напряжения (однополярные) не содержащие высокочастотных колебаний называются видеоимпульсами (рис. 2.2). Электрические импульсы, представляющие собой ограниченные во времени высокочастотные или сверхвысокочастотные электромагнитные колебания, огибающая которых имеет форму видеоимпульса, называются радиоимпульсами.

По характеру изменения во времени различают электрические импульсы прямоугольной, пилообразной, экспоненциальной, колоколобразной и других форм. Реальный видеоимпульс может иметь достаточно сложную форму, которая характеризуется амплитудой А, длительностью импульса tи, длительностью фронта tф и длительностью спада tс, величиной скола вершины DА.

Любой сложный периодический сигнал может быть представлен в виде суммы гармонически колебаний с частотами, кратными основной частоте.

Непериодический сигнал, как правило, ограничен во времени.

Случайным сигналом называют функцию времени, значения которой заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью. В качестве основных характеристик случайных сигналов принимают:

а) закон распределения вероятности (относительное время пребывания величины сигнала в определенном интервале);

б) спектральное распределение мощности сигнала.

Выходные сигналы датчиков являются отражением некоторых физических процессов. Они, как правило, непрерывны, поскольку большинство физических процессов непрерывны по своей природе. Такие сигналы называются аналоговыми.

Аналоговый сигнал описывается непрерывной (или кусочно-непрерывной) функцией xA(t), причем сама функция, как и ее аргумент, может принимать в заданных пределах любые значения. Аналоговые сигналы достаточно просто генерировать и обрабатывать, однако они позволяют решать относительно простые технические задачи. Работа современных электронных систем основана на использовании дискретных и цифровых сигналов.

Дискретный во времени сигнал получается в результате дискретизации непрерывной функции, представляющей замену непрерывной функции ее мгновенными значениями в дискретные моменты времени. Такой сигнал описывается решетчатой функцией (последовательным временным рядом) S (п?t). Она может принимать любые значения в некотором интервале, в то время как независимая переменная n принимает дискретные значения п = 0, ±1, ±2,…, а?t представляет собой интервал дискретизации.

Квантованный по уровню сигнал получается в результате операции квантование. Суть операции квантования по уровню состоит в том, что в непрерывном динамическом диапазоне аналогового сигнала фиксируется ряд дискретных уровней, называемых уровнями квантования. Текущие значения аналогового сигнала отождествляются с ближайшими уровнями квантования.

Квантование по уровню дискретного во времени сигнала позволяет получить дискретно-квантованный сигнал. Цифровой сигнал получается в результате нумерации уровней квантования дискретно-квантованного сигнала двоичными числами (числами в двоичной системе счисления) и, следовательно, представления отсчетных значений дискретно-квантованного сигнала в форме чисел.

Среди детерминированных сигналов особое место занимают испытательные сигналы, необходимость в существовании которых обусловлена потребностями испытания характеристик разрабатываемых электронных устройств.

Гармоническое колебание. Самым распространенным испытательным сигналом является гармоническое колебание, которое используется в измерительной практике для оценки частотных свойств устройств различного назначения.

Единичный скачок представляет собой безразмерную величину, поэтому умножение сигнала s(t) на функцию единичного скачка равносильно включению этого сигнала в момент t=0:


s (t) при t ³ 0;(t) 1 (t) =

при t < t0.


Дельта-функция. По определению ?-функция удовлетворяет следующим условиям:


0 при t ¹ t0;

d(t - t0) =

При t = t0;


Таким образом, ?-функция равна нулю при всех отличных от нуля значениях аргумента и принимает в точке t = 0 бесконечно большое значение. Площадь под кривой, ограниченной ?-функцией, равна единице.


3. Формы представления детерминированных сигналов


Модели сигналов в виде функции времени предназначены, в первую очередь, для анализа формы сигналов. При решении задач прохождения сигналов сложной формы через какие-либо устройства такая модель сигнала часто не совсем удобна и не позволяет понять суть происходящих в устройствах физических процессов.

Поэтому сигналы представляют набором элементарных (базисных) функций, в качестве которых наиболее часто используют ортогональные гармонические (синусоидальные и косинусоидальные) функции. Выбор именно таких функций обусловлен тем, что они являются, с математической точки зрения, собственными функциями инвариантных во времени линейных систем (систем, параметры которых не зависят от времени), т.е. не изменяют своей формы после прохождения через эти системы. В результате сигнал может быть представлен множеством амплитуд, фаз и частот гармонических функций, совокупность которых называется спектром сигнала.

Таким образом, существуют две формы представления произвольного детерминированного сигнала: временное и частотное (спектральное).

Первая форма представления основана на математической модели сигнала в виде функции времени t:


вторая - на математической модели сигнала в виде функции частоты f, причем, что весьма важно, эта модель существует только в области комплексных функций:


S = (f) = S(jf).


Обе формы представления сигнала связаны между собой парой преобразований Фурье:

При использовании угловой (циклической) частоты w = 2pf преобразования Фурье имеют следующий вид:

Временное представление гармонического колебания имеет следующий вид:

где Um, T, f0, w0, и j0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

Для представления такого колебания в частотной области достаточно задать две функции частоты, показывающие, что на частоте w0 амплитуда сигнала равна Um, а начальная фаза равна j0:

Графики временного и частотного представлений гармонического колебания приведены на рис. 2.7, где амплитуда Um и фаза j0 отложены в виде отрезков прямых.

Значения Um =U(w0) и j0 =j(w0) называются соответственно амплитудным и фазовым спектром гармонического колебания, а их совокупность - просто спектром.

Вместо использования в частотной области двух действительных функций можно использовать одну, но комплексную функцию. Для этого запишем временное представление гармонического колебания в комплексной форме:



Если исключить из рассмотрения область отрицательных частот (они физического смысла не имеют), то можно записать:



Где - комплексная амплитуда гармонического колебания, модуль которой равен Um, а аргумент - j0.


4. Цели обработки физических сигналов


Главная цель обработки физических сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов. Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами.

В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале. В частности, смена формата имеет место при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае аналоговые методы используются, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию микроволнового диапазона, коаксиальный или оптоволоконный кабель. В случае цифровой связи аналоговая звуковая информация сначала преобразуется аналого-цифровым преобразователем в цифровую. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи.

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука, в телевидении высокой четкости.

Программно-аппаратные комплексы для автоматизации измерений во многих случаях используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют измерительным процессом. Эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала и цифровых процессоров

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, синхронное детектирование и т.д., часто используются для выполнения этой задачи как в аналоговой, так и в цифровой областях.

Таким образом, цели преобразования сигналов:

·извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие, временные соотношения);

·преобразование формата сигнала;

·сжатие данных;

·формирование сигналов обратной связи;

·аналого-цифровое преобразование;

·цифро-аналоговое преобразование;

·выделение сигнала из шума.


. Методы обработки физических сигналов


Сигналы могут быть обработаны с использованием:

·аналоговых методов (аналоговой обработки сигналов);

·цифровых методов (цифровой обработки сигналов);

·или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов).

Устройства, в которых производится обработка аналоговых сигналов (аналоговая обработка), называются аналоговыми (аналоговыми процессорами).

Устройства, в которых производится обработка цифровых сигналов (цифровая обработка), называются цифровыми (цифровыми процессорами).

В некоторых случаях выбор метода обработки ясен, в других случаях нет ясности в выборе и, следовательно, принятие окончательного решения основывается на определенных соображениях, основанных на преимуществах и недостатках указанных методов.

К основным преимуществам цифровых методов обработки сигналов можно отнести:

·возможность реализации сложных алгоритмов обработки сигналов, которые трудно, а зачастую даже невозможно реализовать c помощью аналоговой техники;

·возможность реализации принципа «адаптации» или самонастройки, то есть возможности изменения алгоритма обработки сигнала без физической перестройки устройства (например, зависимости от вида сигнала, поступающего на вход фильтра);

·возможность одновременной обработки нескольких сигналов;

·принципиально достижимая более высокая точность обработки сигнала;

·отсутствие существенного влияния нестабильности параметров цифровых процессоров, вызванной колебаниями температуры, старением, дрейфом нуля, изменением питающих напряжений и другими причинами, на «качество» обработки сигналов;

·большая помехоустойчивость цифровых устройств и меньшие энергетические, временные и частотные «затраты» на передачу цифровых сигналов (по сравнению с передачей аналоговых сигналов);

·более высокий уровень развития цифровых устройств.

К недостаткам цифровых процессоров можно отнести:

·большую сложность по сравнению с аналоговыми устройствами и пока еще более высокую стоимость;

·не столь высокое, как хотелось бы, быстродействие;

·невозможность устранения специфических погрешностей, вызванных дискретизацией, квантованием сигнала и округлениями в процессе вычислений.

Сегодняшний специалист стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, тензорезисторы, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами. Поэтому, некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов аналоговым или цифровым методом. В действительности, цепи нормализации сигнала - это аналоговые процессоры, выполняющие:

·усиление сигналов в измерительных и предварительных (буферных) усилителях);

·обнаружение сигнала на фоне шума высокоточными усилителями синфазного сигнала;

·динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления);

·фильтрация (пассивная и активная).


Литература


1.Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. - М.: Энергоатомиздат, 2011. - 528 с., ил.

2.Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. - 4-е изд., перераб. - М.: Энергоатомиздат, 2003. - 440 с., ил.

.Основы промышленной электроники: Учебник для неэлектротехн. спец. вузов /В.Г. Герасимов, О М. Князьков, А Е. Краснопольский, В.В. Сухоруков; под ред. В.Г. Герасимова. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2006. - 336 с., ил.

.Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.1. Электрические и магнитные цепи. - М.: Высшая шк. - 2006 г.

.Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.2. Электромагнитные устройства и электрические машины. - М.: Высшая шк. - 2007 г.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Сигналы – носители информации в средствах автоматизации могут различаться как по физической природе и параметрам, так и по форме представления информации. В рамках ГСП (государственная система приборов) применяются в серийном производстве средств автоматизации следующие типы сигналов:

Электрический сигнал (напряжение, сила или частота электрического тока);

Пневматический сигнал (давление сжатого воздуха);

Гидравлический сигнал (давление или перепад давлений жидкости).

Соответственно в рамках ГСП формируются электрическая, пневматическая и гидравлическая ветви средств автоматизации

По форме представления информации сигнал может быть аналоговым, импульсным и кодовым.

Аналоговый сигнал характеризуется текущими изменениями какого–либо физического параметра–носителя (например, мгновенными значениями электрического напряжения или тока). Такой сигнал существует практически в каждый данный момент времени и может принимать любые значения в пределах заданного диапазона изменений параметра.

Импульсный сигнал характерен представлением информации только в дискретные моменты времени, т.е. наличием квантования по времени. При этом информация представляется в виде последовательности импульсов одинаковой продолжительности, но различной амплитуды (амплитудно-импульсная модуляция сигнала) или одинаковой амплитуды, но разной продолжительности (широтно-импульсная модуляция сигнала).

Кодовый сигнал представляет собой сложную последовательность импульсов, используемую для передачи цифровой информации. При этом каждая цифра может быть представлена в виде сложной последовательности импульсов, т.е. кода, а передаваемый сигнал является дискретным (квантуется) и по времени, и по уровню.

Оптический сигнал – световая волна, несущая определенную информацию. Особенностью световой волны по сравнению с радиоволной является то, что вследствие малой длины волны в ней может быть практически осуществлена передача, прием и обработка сигналов, модулированных не только по времени, но и по пространственным координатам. Это позволяет значительно увеличить объем вносимой в оптический сигнал информации. Оптический сигнал – функция четырех переменных (x,y,z,t) – 3-х координат и времени. Электромагнитная волна – изменение во времени и в каждой точке пространства электрического и магнитного полей, которые связаны между собой по закону индукции. Электромагнитная волна характеризуется взаимно перпендикулярными векторами напряженностей электрического E и магнитного H полей, которые изменяются во времени по одному и тому же гармоническому закону.

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Назначение радиоэлектронных устройств, как известно, - получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

Аналоговый сигнал - сигнал, непрерывный по уровню и во времени, т. е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

Квантованный сигнал - сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями - шаг квантования.

Дискретизированный сигнал - сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации - шаг дискретизации . При постоянном применима теорема Котельникова: , где - верхняя граничная частота спектра сигнала.

Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения - 0 и 1 (рис. 2.1).

Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам, - минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники - достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий, или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование - восстановление аналоговых сигналов по цифровым - выполняется с помощью цифроаналоговых преобразователей (ЦАП).


При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1).

Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация - чтение, сдвиг, логическая команда и т. п. Информация представляется в виде цифрового слова. Для передачи слов используются два способа - параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

Элементную базу для построения цифровых устройств составляют интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов - простейших цифровых устройств, выполняющих элементарные логические операции.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.