Выбор ширины канала 20 40 мгц. Почему режется скорость Интернета по WiFi: Бесплатные советы как ускорить передачу данных. Итак, как же нам поправить состояние нашего Wi-Fi

Гораздо чаще, чем хотелось бы, пользователи сталкиваются с проблемой падения скорости доступа в Интернет. С чем это связано – причин очень много, и в данной статье рассмотрим несколько наиболее частых и легко решаемых причин падения скорости, а также затронем тему, как увеличить скорость роутера.

Но перед определением причин у вас должны быть выполнены некоторые требования, а именно устройство должен быть в зоне видимости, чтобы видеть индикаторные светодиоды, и у вас должен быть действующий логин и пароль для входа в меню настроек. Узнаем, для чего это необходимо.

Несанкционированные подключения

Очень частая проблема падения скорости, когда к вашей беспроводной Wi-Fi сети подключаются любители халявы. Это, конечно, при условии, что вы установили пароль на подключение. Если это так и есть – самое время его установить.

Для этого заходим в настройки роутера, и переходим в меню «Беспроводной режим», «Защита».

Установка пароля Wi-Fi

Пароль вводим в поле «Пароль PSK», и чем сложнее и длиннее пароль, тем сложнее его взломать. При это нужно помнить, что он не может быть короче восьми символов, и букв, отличных от английского языка и цифр.

Сохраняем настройки, на этом защита Wi-Fi завершена. Если при этом скорость не пришла в норму, то есть не увеличилась, то читаем дальше.

Взлом пароля Wi-Fi

Есть народная мудрость – абсолютной защиты не существует. Раз есть пароль, значит его можно взломать. К сожалению, Wi-Fi не является исключением, и есть ряд программ для взлома ключа (о них в данной статье речи не будет). Чтобы определить, не взломал ли сосед наш пароль, и не является ли причиной падения скорости, существует как минимум два способа.

Способ первый – посмотреть внимательно на индикаторные огоньки передней панели роутера.

Индикаторы на передней панели

Нас интересует индикатор WLAN – активность беспроводной сети. При этом отключаем все наши беспроводные устройства (компьютер, ноутбук, смартфон и все остальное), одним словом – Wi-Fi не используем. Если при этом индикатор продолжает мигать, значит роутер продолжает передавать кому-то данные, а это значит, что кто-то все-таки к нам подключен. Разберемся, кто это такой, через меню настроек.

Возвращаемся в меню настроек, переходим в меню «Статус», далее подменю «LAN клиенты».

Клиенты беспроводной сети

Данный список должен быть пустым, так как наши все беспроводные устройства отключены, и никто к роутеру не подключен. Если в списке есть подключения, то факт взлома на лицо – к вам кто-то подключен.

В таком случае можно сделать хитрый ход – открыть доступ к вай-фай сети (пароль все равно не спасает), но настроить фильтр по mac-адресам, в список которого прописать все физические адреса только наших устройств. Переходим в меню «Wi-Fi», далее подменю «MAC-фильтр».

Список доверенных mac-адресов

Сформировав список физических адресов, переходим во вкладку «Режим фильтра».

Режим mac-фильтра

И ставим режим «Разрешен». Все, теперь маршрутизатор будет работать только с устройствами, адрес которых есть в данном списке, всех остальных игнорируя. Пароль теперь даже не требуется.

Расположение маршрутизатора

Многие уверены, что если роутер беспроводной, то его можно разместить в любом месте, и сигнал будет распространяться без проблем при любых условиях. Но после перестановки мебели в квартире и, соответственно, «переезду» роутера в другой угол комнаты, вдруг упала и скорость Интернета. В такой ситуации очень вероятно просто не лучшее расположение роутера.

Проверьте следующее:

  1. Не слишком ли большое расстояние между компьютером и маршрутизатором. Чем слабее приемный сигнал, тем ниже скорость передачи;
  2. Нет ли между ними препятствий в виде несущих металлизированных стен, металлических листов. Любой металл очень сильно искажает радио сигнал;
  3. Проверьте антенну. Если антенна съемная – снимите ее, почистите гнездо подключения антенны, поставьте ее на место. Так же имеет смысл приобрести антенну с более высоким коэффициентом усиления (дБи). Например – если у вас коэффициент 2 дБи, то купить на 5 дБи;
  4. Нет ли между компьютером и роутером радио телефонов, микроволновых печей, блютуз устройств. Дело в том, что вышеперечисленные устройства также излучают радиоволны с частотой 2,4 ГГц, что создает помеху нашей сети.

Смена канала

Если с этими условиями проблем нет, то стоит попробовать сменить радио канал. Делается это в меню настроек «Wi-Fi», в основных настройках.

Смена канала Wi-Fi

По умолчанию обычно в графе «Канал» стоит значение «Авто», то есть маршрутизатор сам выбираем наиболее свободный канал. Но он не всегда адекватно это делает, и выбирает далеко не самый лучший вариант. Попробуйте вручную поэкспериментировать с каналами, может найдете самый свободный, и при удачном стечении скорость заметно увеличится.

Также стоит обратить на стандарт беспроводной сети – он должен быть не ниже «N» (Если, конечно, роутер его поддерживает).

Настройка режима Wi-Fi

Если выбирает режим смешивания, то там должен присутствовать режим «n» (150 Мбит/с для устройств с одной антенной).

Изменение ширины канала

Многие, но далеко не все, маршрутизаторы позволяют пользователю изменять ширину канала – 20МГц или 40МГц.

Выбор ширины Wi-Fi канала

Даже если у вас стоит значение 40, то все равно попробуйте поменять на значение 20.

Следует помнить, что ширина в 40 МГц увеличивает скорость только при хорошем устойчивом уровне сигнала! Если связь роутера и компьютера плохая, что увеличение ширины канала может наоборот еще больше ухудшить положение!

Если у вас старенький роутер, с слабым процессором, то стоить помнить, что весь поток информации, проходящий через роутер, обязательно анализируется, и такой сервис, как фаервол, может очень сильно задерживать поток.

Для эксперимента попробуйте его отключить. Делается это в меню «Безопасность».

Фаервол роутера

Ищем подгруппу «Firewall» и выбираем значение «Disable» (отключить).

Линия, провайдер

Ну и наконец, вина возможна вовсе не в роутере, а в проводах, идущих от провайдера к вашей квартире. Для выяснения, так это или нет, необходимо позвонить в службу поддержки провайдера и вызвать мастера, который произведет замеры состояния линии. Возможно, где-то неплотный контакт, либо в магистраль попала влага, и без ремонта линии в данном случае ничего не сделать.

На последок видео о мифах, что при помощи жестяных банок можно увеличить уровень сигнала:

При рассмотрении развертывания стандарта 802.11 ac решающее значение имеет понимание его базовой технологии. Несмотря на огромные преимущества, стандарт 802.11 ac по-прежнему восприимчив к традиционным проблемам, отрицательно влияющим на производительность сети WiFi: помехам, не относящимся к WiFi, межканальным помехам, плохому качеству сигнала, шумам и совместному использованию канала с устаревшими клиентами, имеющими меньшую скорость передачи. Эти проблемы можно успешно решить только при наличии жесткого плана реализации этой революционной технологии. Боритесь с желанием просто купить несколько точек доступа 802.11 ac, подключить их и позволить пользователям ими пользоваться.

Основные этапы развертывания сети 802.11 ac:

1. Тщательное планирование и оценка площадки

2. Проверка правильности установки

3. Устранение неисправностей и оптимизация

Мы опишем соображения и лучшие методы для каждого этапа, а также дадим рекомендации для достижения наилучшей производительности и качества сигнала.

Планирование и оценка площадки

Ожидается, что внедрение нового стандарта 802.11 ac будет выполняться параллельно с более ранними системами a/b/g/n. Так как стандарт 802.11 ac имеет обратную совместимость с системами a/n, использующими полосу частот 5 ГГц, нет необходимости полностью удалять эти «старые» точки доступа. Тем не менее, очень важно понять, какие устройства уже конкурируют за радиочастотный спектр, и как точки доступа 802.11 ac могут дополнять среду для достижения целей проекта. Этап планирования будет включать в себя исследование перед развертыванием, которое призвано определить текущую конфигурацию устройств, уровень шумов, источники помех, покрытие сигнала и пропускную способность сети.

Начальное исследование площадки

Перед приобретением и установкой любого оборудования 802.11 ac или удалением любых имеющихся точек доступа необходимо определить текущее состояние среды WiFi. Определить источники помех, покрытие сигнала, доступность канала в диапазоне 5 ГГц и текущую конфигурацию всех установленных устройств 802.11a/n. Это может сопровождаться выполнением исследования «AP-On-A-Stick», когда включается и развертывается одна точка доступа 802.11 ac, и отмечается воздействие среды на покрытие и пропускную способность.

Необходимая пропускная способность

Далее необходимо рассмотреть целевую пропускную способность проекта. Сюда нужно будет включить расчет уровня пропускной способности, требуемого пользовательскими приложениями, и учесть количество пользователей каждого приложения. Пользователи могут подключаться со смартфонов, планшетов, ноутбуков и других клиентских устройств WiFi, которые будут формировать потребность в адекватном покрытии для устройств с различными возможностями.

Например, если в определенной зоне ожидается подключение пяти пользователей максимально с 15 устройств (по три на одного пользователя), в зависимости от того, насколько потребуются голосовые службы, службы видео или только веб-сервисы, мы сможем оценить необходимую ширину полосы пропускания как приблизительно 30 Мбит/с. Это, конечно, будет зависеть от используемых приложений и количества одновременно подключающихся пользователей. Чтобы поддержать плотность пользователей, как правило, планируется не более 20 активных устройств на одну точку доступа.

Требуемая полоса частот на одно приложение 1

Приложение по типу использования

Номинальная пропускная способность

Интернет - развлечение

500 килобит в секунду (Кбит/с)

Интернет - обучение

1 мегабит в секунду (Мбит/с)

Аудио - развлечение

Аудио - обучение

Потоковое видео или видео по запросу - развлечение

Потоковое видео или видео по запросу - обучение

Совместное использование файлов - развлечение

Совместное использование файлов - обучение

Онлайн-тестирование

Резервирование устройств

10-50 Мбит/с

1 Jim Florwick, Jim Whiteaker, Alan Cuellar Amrod, Jake Woodhams, Wireless LAN Design Guide for High Density Client Environments in Higher Education (Руководство по проектированию беспроводного доступа в Интернет для среды с высокой плотностью клиентов в высшем образовании) (Cisco Design Guide, 2013), стр . 8 .

Соображения по распределению каналов

Стандарт 802.11 ac позволяет использовать каналы 80 МГц в диапазоне 5 ГГц, которые образуются эффективным объединением четырех каналов 20 МГц. При выборе конфигурации точки доступа настраивается один первичный канал 20 МГц, например 36, который будет выступать в качестве канала маячков и запасного канала. Если к точке доступа желает подключиться устройство более старого стандарта, оно сможет использовать этот первичный канал 20 МГц для подключения и работы. Однако так как этот отдельный канал входит в общий составной канал 80 МГц, это будет тормозить передачу клиента 802.11 ac к точке доступа, когда используется первичный канал 20 МГц.

Лучшим методом развертывания точек доступа 802.11 ac является их попеременное использование от двух до пяти доступных каналов 80 МГц. На одной точке доступа объединяются каналы 36 - 48, а на другой каналы 52 - 64. Если в определенной зоне возникает необходимость перекрытия этих каналов, настраивайте для них разные первичные каналы 36, 44, 52, и 60, соответственно. Это позволит оставить достаточный зазор между каналами для поддержки устройств более старого стандарта, которые должны подключаться к каналам 20 МГц без создания перекрестных помех между каналами.

Развертывание и проверка

После тщательного определения необходимой пропускной способности и зоны покрытия настройте и введите в эксплуатацию точки доступа 802.11 ac в соответствии с планом проекта. Это не означает простое удаление старых точек доступа и подключение новых точек доступа 802.11 ac в тех же местах. При планировании конфигурации и расположения точек доступа необходимо учитывать следующие соображения.

  • Коммутационная инфраструктура

Возможно, потребуется улучшение соединений точек доступа с сетью по сравнению с тем, что требовалось раньше. Так как возможно приближение пропускной способности к уровню 1 Гбит/с, соединение точки доступа с коммутатором доступа должно быть не ниже 1 Гбит/с, с восходящей линией 10 Гбит/с до центра коммутации. Точкам доступа 802.11 ac требуется питание с использованием 802.3at (PoE+), а не 802.3af, из-за более высокой потребности антенн в электрической мощности. Это может потребовать либо модернизации коммутатора, или использования встраиваемого в линию инжектора питания.

  • Ширина канала

В зависимости от потребностей пользователей на точках доступа 802.11 ac можно настраивать ширину канала 20 МГц, 40 МГц или 80 МГц. Каналы 80 МГц имеют бόльшую пропускную способность, но во многих сетях могут быть доступны только два таких канала. В плотно используемой среде с сотнями возможных пользователей, для предоставления адекватной связи потребуется больше точек доступа, что может вынудить использовать 22 неперекрывающихся канала 20 МГц. Тщательно рассчитайте плотность пользователей и ожидаемую пропускную способность приложений, так как эта информация будет иметь решающее значение в принятии решения о необходимом количестве точек доступа и выборе ширины используемого канала. Также нужно внимательно проанализировать сочетание клиентов 802.11 ac и клиентов 11а и 11n. Если большинство клиентов 11a/n, возможно, имеет смысл использовать каналы 20 или 40 МГц, так как остальная полоса частот канала 80 МГц будет оставаться неиспользуемой во время работы клиента 11a/n.

Визуализация ширины канала 20/40/80/140 МГц в AirMagnet Survey

  • Покрытие точки доступа

К разным зонам предъявляются разные требования по пропускной способности сети. В зависимости от плотности пользователей и приложений может оказаться так, что высокая пропускная способность потребуется только в отдельных зонах, в то время как зоны коридоров и вестибюлей резервируются для передачи данных. Для определения мощности и направленности антенн, размера соты и идеального метода развертывания может потребоваться подробная информация от производителя точки доступа.

После расчета потребностей пользователей до физической установки точек доступа можно воспользоваться программой AirMagnet Planner для моделирования виртуальной среды WiFi. Для обеспечения адекватного покрытия и пропускной способности можно установить количество точек доступа и их расположение, принимая во внимание материалы стен и источники помех. Используя эти данные затем уже можно физически размещать точки доступа в запланированных зонах.

Для того, чтобы определить, обеспечивает ли среда ожидаемое покрытие и планируемую пропускную способность помещение необходимо протестировать после развертывания. Для проверки можно использовать как активное измерение пропускной способности сети для пользователя, так и пассивное исследование с измерением сигнала, шумов, помех, перекрывания каналов и других важных параметров всей среды WLAN. Активное обследование должно включать в себя проверку пропускной способности как восходящего, так и нисходящего потока с инструмента 802.802.11 ac. Чтобы убедиться, что все обычные параметры соответствуют норме во время испытания, такое тестирование следует проводить в часы пикового трафика.

Активное исследование запускается с помощью AirMagnet Survey Pro iPerf ; при этом измеряется и отображается в режиме реального времени доступная пользователю пропускная способность, и выделяются зоны с низкой пропускной способностью. Рекомендуется проводить многоадаптерное исследование, которое позволяет одновременно запускать как пассивные, так и активные проверки. Это позволяет за один раз измерить все необходимые точки данных.

Поиск и устранение неисправностей, оптимизация

Если в ходе обследования не достигнуты какие-либо из требований пользовательской пропускной способности, можно внести поправки, которые позволят гарантировать соответствие целевым показателям производительности. Для того чтобы определить, какие беспроводные факторы в окружающей среде влияют на снижение производительности, можно использовать функцию проверки Airwise Policy в AirMagnet Survey Pro. В качестве помощи для правильной корректировки в нужных местах для достижения желаемых целей предоставляется специально разработанный рабочий процесс.

Корректировки могут включать в себя изменение местоположения точек доступа, установку дополнительных точек доступа, корректировку плана каналов, устранение источников помех или регулировку мощности передачи, что влияет на размер соты. Чтобы убедиться в достижении поставленных целей, следуйте корректировкам, рекомендованным Airwise, проверьте среду с помощью другого мультиадаптера, проведите активное и пассивное исследование.

И, наконец, заключительная проверка с помощью функции iPerf из Survey Pro позволит доказать, что сеть успешно построена в соответствии с потребностями пользователя.

Успешное внедрение 802.11 ac

AirMagnet Survey Pro позволяет легко оценить все преимущества реализации стандарта 802.11 ac. Но если не провести тщательное планирование, проверку и оптимизацию, потенциальные преимущества стандарта 802.11 ac будут потеряны вследствие воздействия прежней среды, чрезмерных шумов, плохого планирования каналов или неправильного размещения точек доступа.

Получить максимальную отдачу от стандарта 802.11 ac, можно, например, используя анализаторы WiFi семейства AirMagnet от компании Fluke Networks.

Данная статья будет весьма интересна владельцам Ubiquiti M2 .

Итак, мы купили парочку UBNT M2 (неважно, NanoStation или NanoBrigde). Установили. Одну выставили в качестве АП , вторую - в качестве Station , навели их по сигналу. Линк поднялся. Теперь хотелось бы сделать линк максимально стабильным

Первое, что мы делаем - это запускаем Tools->Site Survey с двух сторон.

Рис.1.

Если в списке мы видим больше двух станций, то выполняем следующие действия: Channel Width на вкладке Wireless выставляем в 20MГц.

Дело в том, что под диапазон 2.4 ГГц выделено всего 60 МГц. С шириной канала 40 МГц станция занимает 2/3 доступного диапазона - и сама всем мешает, и все ей мешают, и работать никто не может.

Второе, что нужно сделать, - это придумать нагрузку. Все изменения нужно проверять при прохождении трафика. Без трафика станция может соединяться на 130/130 а под нагрузкой проседать до 26/26. В качестве нагрузки встроенный тест скорости подходит только для того, чтобы хвастаться друзьям, - уж слишком завышает скорость.

Можно для проверки использовать сайты в Интернете либо запустить торрент с множеством фильмов на закачку.

Рис.2. Работа станции при ширине канала в 40 МГц.

На рисунке 2 рассмотрен пример неудачной настройки. В 40 МГц TX/RX Rate должен быть порядка 300/300. А у нас станция работает на скорости ниже, чем возможно работать даже в 20 МГц. Тест сделан утром, когда активность чужих станций невелика. Чем больше активность чужих станций, тем хуже у нас скорость.


Рис.3. Работа станции при ширине канала в 20 МГц.

Прейдя в 20 МГц, мы немного потеряли в скорости, зато заметно повысили стабильность. Каждый шаг 40->20->10->5 повышает сигнал на 3Дб и уменьшает уровень шума на 3Дб.

Следующим шагом будет выбор частоты. Для этой цели можно долго всматривается в, а можно запустить. Чужие станции для нас являются источником шума. Шум мешает принимать, но передавать шум не мешает. Поэтому выбирать частоту нужно на станции, для которой скорость скачивания важнее. На рисунке 4 видно, что меньше всего используются частоты около 5 канала и около 12-13 каналов.


Рис.4.

Ещё есть очень хорошая опция - Channel Shifting на вкладке Wireless . Она сдвигает сетку частот на 3 МГц. В условиях зашумленного эфира это позволяет выжать пару мегабит.

В прошивке 5.5 появилась возможность работать в 25 и 30 МГц. Переход на 25 МГц позволяет увеличить пропускную способность , при этом не сильно теряя в стабильности.


Рис.5. Работа станции при ширине канала в 25 МГц.

Выбор мощности. Работа на мощности больше 20 дбм нежелательна. Чем больше мощность передатчика, там больше внеполосного излучения, тем больше станция засоряет весь диапазон.

Нужно добиваться, чтобы на входе в приёмник получалось от -60 до -70 дбм. Если у нас -50, то нужно мощность уменьшать. Работа с таким сигналом вредна для приёмника.

Если же получается -80, то либо нужно использовать антенны с большим КУ, либо добиваться прямой видимости.

AirMax - одна из особенностей станций UBNT. Это поллинговый протокол разработки UBNT. Призван частично компенсировать недостатки стандартов 802.11 a/b/g/n при применении их на открытом воздухе. Но компания Ubiquiti его явно перехвалила, потому что работает он не всегда хорошо. Поэтому включение AirMax - дело индивидуальное. В одних случаях позволяет поднять реальную скорость, а в других - понижает. По моим наблюдениям, максимальная скорость при чистом эфире уменьшается (утром-ночью), а при засорённом эфире (вечер) скорость увеличивается.

Aggregation .

Можно найти на вкладке Advanced Wireless Settings . Количество Frames я бы оставил 32, а вот с Bytes можно экспериментировать: уменьшение увеличивает стабильность, а увеличение - увеличивает скорость

В сильно зашумленном эфире уменьшение Bytes повышает и скорость, и стабильность.

Специально для ASP24.

Я не затронул один важный момент - использование сетей шириной 40 МГц в диапазоне 2,4 ГГц. Видимо зря, поскольку укоренившиеся в умах читателей gg мнение (не без усилий со стороны отцов-основателей ресурса) категорически не приемлет самой мысли о возможности использования «широких» сетей в 2,4 ГГц диапазоне - в чем легко удостовериться, почитав комментарии под упомянутой статьей. Сегодня я попробую расставить если не все, то многие точки над «i» касаемо этого вопроса. А заодно разрушу еще пару мифов и легенд сложившихся вокруг работы Wi-Fi сетей (привет Адаму Севиджу и Джейми Хайнеману).

На чем базируются аргументы противников 40 МГц сетей? На том, что:

  1. непересекающихся каналов в Wi-Fi диапазоне 2,4 ГГц катастрофически мало, поэтому минимальная ширина канала в 20 МГц - это наше (их) всё;
  2. 40 МГц сети создают сильные помехи остальным работающим рядом Wi-Fi сетям. Ужас!

Ну что же, будем развенчивать мифы по порядку.

О вреде общественного мнения

Устоявшееся общественное мнение вовсе не обязательно означает, что оно автоматически верное. Ведь мнение это формируется под влиянием определенных личностей, его сформировавших и отстаивающих. И многие эти личности, мягко говоря, были далеко не из самых умных. Именно благодаря укоренившемуся общественному мнению погорел Джордано Бруно, страдал Галилей, лишился работы Георг Ом и т.д. и т.п. Откровенно посмеивался над «общественным» мнением и Альберт Эйнштейн. Сейчас я докажу вам, что великий физик был прав...

Итак, в каждой второй, если не в каждой первой статье посвященной Wi-Fi сетям, нам настойчиво объясняют, что в диапазоне 2,4 ГГц существует всего 3 непересекающихся (т.е. не создающих сильных помех друг другу) канала - 1, 6 и 11. О какой 40 МГц ширине канала можно говорить в таком случае, если одна «широкая» сеть «съедает» бо льшую часть доступного радиодиапазона?! Мнение про 3 непересекающихся канала настолько прочно укоренилось в уме народа, что я даже не стану с ним спорить. Я просто скажу, что это наглая ложь. Полная чушь. Бред сивой кобылы. Звездеж. Называйте как хотите. Если немножко высунуться и выглянуть из общественного танка, то реальная действительность окажется заметно лучше: в европейском регионе, куда мы с вами также относимся, в 2,4 ГГц Wi-Fi диапазоне доступны 4 непересекающихся 20 МГц канала: 1, 5, 9 и 13. Только так и никак иначе. Работать в этих диапазонах не позволяет разве что оборудование купленное непосредственно в США и завезенное в Украину, либо прошитое американской прошивкой - но таких устройств мизерное количество. Поэтому даже в пределах одной маленькой тесной комнаты вполне успешно могут работать две независимые «широкие» 40 МГц Wi-Fi сети , совершенно не мешая при этом друг другу.

А как же помехи для соседских сетей? Ведь мы же здесь все очень переживаем за качество Wi-Fi связи у соседей и вообще за мир Wi-Fi во всем мире!

Непонимание

В поддержку своей «теории вредности широких сетей» апологеты 20 МГц хором напевают мотивчик о сильных помехах от 40 МГц сети на соседние Wi-Fi сети. В качестве убедительных аргументов они даже приводят графики программ, показывающих наличие массы каких-то Wi-Fi сетей вокруг.

Однако же проблема в том, что даже люди, которые вроде бы неплохо разбираются в теме Wi-Fi, плохо себе представляют, что именно показывают данные графики. Что уже говорить за остальных пользователей. Так вот, графики эти показывают совсем не то, что мы привыкли видеть на диаграммах сравнения производительности процессоров или там видеокарт. Но обычные люди интерпретируют увиденное именно так. Более того, реально бояться что 40 МГц сеть «заглушит» своим «мощным» сигналом все вот эти слабенькие сети-росточки рядом. Проблема даже не в том, что 40 МГц ширина канала не имеет вообще никакого отношения к мощности сети. Проблема в том, что «Децибел» и «Децл» в понимании большинства этих людей обозначают примерно одно и то же. Нет, я вовсе не виню их в этом. Это нормально. Но, позвольте, я попробую объяснить разницу доступным языком.

Чем же отличаются децибелы от прочих «попугаев», которыми меряют производительность видеокарт и процессоров? Децибелы помогают отобразить разницу между показателями, величина которых отличается не на единицы и десятки величин, а на порядок. Например, разница в силе сигнала Wi-Fi сетей в 10 дБ обозначает разницу ровно в 10 раз, разница 20 дБ - уже в 100 раз, а 30дБ - в тысячу раз. На обычном графике в «попугаях» наглядно изобразить разницу таких величин было бы очень затруднительно. Ведь минимальное значение на диаграмме банально рискует быть незаметным «невооруженному глазу». Поэтому на помощь приходят децибелы. Так, 5 дБ - это уже разница в мощности сигнала в 3,16 раза, 1дБ - в 1,26 раза. Разница в 1 или 5 дБ - это конечно слишком мало, хотя есть реальные сети, вполне нормально работающие и в таких непростых условиях. Но 10-20 дБ разницы в мощности сигнала, которые обычно есть у большинства пользователей (разумеется замеры силы сигнала следует проводить недалеко от маршрутизатора или точки доступа, а не на балконе соседнего дома) уже вполне достаточно, чтобы не ловить значительных помех от других сетей. И одновременно не мешать нормально работать этим другим сетям, ведь сигнал от нашего Wi-Fi устройства , распространяясь в район другой сети, пропорционально ослабевает. И абсолютно неважно, 20 или 40 МГц будет ширина используемой сети. Почему я считаю, что разницы 10-20 дБ достаточно?

Мешают тут все!

Открою вам страшную тайну: непересекающихся каналов Wi-Fi в диапазоне 2,4 ГГц физически не существует. Вообще. Как же так? Просто диаграммы приложений типа inSSIDer, Acrylic Wi-Fi Home, Wifi Analyzer и иже с ними показывают нам не всю правду...


При работе антенна Wi-Fi излучает не только полезный сигнал, но и помехи - это ей просто положено по законам физики. Мощность излучения антенны распределяется примерно так (по данным компании Zyxel):


За нулевой уровень максимальной мощности здесь для удобства взято 0дБ, но картинку вполне успешно можно экстраполировать. Как видим, на мощности сигнала -28дБ от максимальной даже один канал уже успешно занимает полосу шириной 40 МГц. А на уровне сигнала более -40дБ от максимума вполне успешно «пересекаются» даже самые удаленные каналы 1 и 13. Является ли это сколь-либо существенной проблемой для работы Wi-Fi сетей? Нет. В то же время некоторые читатели gagadget не постеснялись выкладывать скрины показывающие разность мощностей сигнала с соседними сетями как минимум в 30 дБ, и были при этом абсолютно уверенны в своей правоте относительно невозможности использования «широких» 40 МГц Wi-Fi сетей. Правда, в итоге так и не смогли объяснить причину своей уверенности…

Зачем?

А ради чего весь огород? В чем практическая польза от 40 МГц? И почему 20 МГц хуже? Отвечаю. На конкретном примере. При ширине канала 40 МГц производительность беспроводной Wi-Fi сети достигает 13-16 МБ/с, при ширине 20 МГц - лишь порядка 7-9Мб/с. Стоит ли жертвовать скоростью Wi-Fi сети в угоду каким-то нелепым предрассудкам? Я думаю, не стоит. Впрочем, у вас всегда есть право на собственное мнение, неотличимое от общественного.

P.S. Даже если ваш сосед соорудил мощную сеть, вы можете избежать значительных помех от нее просто изменив поляризацию антенн роутера или точки доступа, если антенны позволяют это сделать. Более того, если имеются сильные помехи от соседних сетей, многие производители оборудования справедливо рекомендуют уменьшить мощность сигнала вашей Wi-Fi сети, чтобы улучшить связь. Не буду вдаваться в подробности, но таким образом роутеру или точке доступа банально легче фильтровать «сильные» помехи. Впрочем, это уже совсем другая история из области физики, о которой я тут писать не собираюсь.


Для многих, кто только начинает свое знакомство с WiFi, технические параметры беспроводного оборудования могут казаться не совсем понятными. Особенно, если спецификация - на английском языке , как в случае MikroTik, Ubiquiti и других вендоров.

Попробуем рассмотреть некоторые наиболее важные параметры - что они означают, на что влияют, в каких случаях и на какие нужно обращать внимание.

Мощность передатчика (Tx Power, Output Power)

Разные единицы измерения . Некоторые производители указывают мощность в mW, некоторые - в dBm. Перевести dBm в mW и наоборот, не забивая себе голову формулами перерасчета, можно с помощью.

Стоит заметить, что зависимость между этими двумя представлениями мощности - нелинейная. Это легко увидеть при сравнении готовых значений в таблице соответствий, которая расположена на той же странице, где и вышеприведенный калькулятор:

  • Увеличение мощности на 3 dBm дает прирост в мВт в 2 раза .
  • Увеличение мощности на 10 dBm дает прирост в мВт в 10 раз .
  • Увеличение мощности на 20 dBm дает прирост в мВт в 100 раз .

Т. е., уменьшив или увеличив мощность в настройках "всего лишь" на 3 дБм, мы фактически понижаем или повышаем ее в 2 раза.

Чем больше, тем лучше? Теоретически, существует прямая зависимость - чем больше мощность, тем лучше, дальше "бьет" сигнал, тем больше пропускная способность (объем передаваемых данных). Для магистральных каналов точка-точка с направленными антеннами, поднимаемых на открытых пространствах, это действует. Однако во многих других случаях не все так прямолинейно.

  • Помехи в городе . Выкрученная на максимум мощность может скорее повредить, чем помочь в городских условиях. Слишком сильный сигнал, переотражаясь от многочисленных препятствий, создает массу помех, и в итоге сводит на нет все преимущества большой мощности.
  • Засорение эфира. Неоправданно мощный сигнал "забивает" канал передачи и создает помехи для других участников WiFi-движения.
  • Синхронизация с маломощными устройствами. Снижать TX Power может быть необходимо при соединении с маломощными устройствами. Для хорошего качества соединения, особенно двусторонне ёмкого трафика, такого как интерактивные приложения, онлайн-игры и т. д. нужно добиваться симметрии скорости для входящих и исходящих данных. Если же разница в мощности сигнала между передающим и принимающим устройствами будет значительна, это скажется на соединении не лучшим образом.

Мощности должно быть ровно столько, сколько необходимо. Даже при советуется сначала сбросить мощность до минимума и постепенно повышать, добиваясь наилучшего качества сигнала. При этом помните о нелинейной зависимости между мощностью, выраженной в дБм и фактической энергетической мощностью, о чем мы говорили в начале статьи.

Важно также учитывать, что дальность и скорость зависят не только от мощности, но и от КУ (коэффициента усиления) антенны, чувствительности приемника и т. д.

Чувствительность приемника (Sensitivity, Rx Power)

Чувствительность приемника WiFi - это минимальный уровень входящего сигнала, который способно принять устройство. От этой величины зависит, насколько слабые сигналы приемник сможет расшифровать (демодулировать).

Соответственно этому можно подобрать оборудование для условий, в которых вы хотите поднять беспроводное соединение.

"Слабый" в данном случае не обязательно - "недостаточно мощный". Слабым сигнал может быть как в результате естественного затухания при передаче на дальнее расстояние (чем дальше от источника - тем слабее уровень сигнала), поглощения преградами, так и в результате плохого (низкого) соотношения сигнал/шум. Последнее важно, так как высокий уровень шума заглушает, искажает основной сигнал, вплоть до того, что принимающее устройство не сможет его "выделить" из общего потока и расшифровать.

Чувствительность (RX Power) - это второй важный фактор, влияющий на дальность связи и скорость передачи. Чем абсолютное значение чувствительности больше, тем лучше (например, чувствительность в -60 dbm хуже, чем -90 dBm).

Почему чувствительность отображается со знаком минус? Чувствительность определяется подобно мощности в dBm, но со знаком минус. Причина этого - в определении dBm как единицы измерения. Это относительная величина, и отправной точкой для нее служит 1 мВт. 0 дБм = 1 мВт. Причем соотношения и шкала этих величин устроены своеобразным образом: при увеличении мощности в мВт в несколько раз, мощность в дБм растет на несколько единиц (аналогично мощности).

  • Мощность радиопередатчиков больше, чем 1 мВт, поэтому выражается в положительных величинах.
  • Чувствительность радиопередатчиков, или точнее - уровень входящего сигнала, всегда намного меньше 1 мВт, поэтому ее принято выражать в отрицательных величинах.

Представлять чувствительность в в мВт просто-напросто неудобно, так как там будут фигурировать такие цифры, как 0.00000005 мВт, к примеру. А при выражении чувствительности в dBm мы видим более понятные -73 dbm, -60dBm.

Чувствительность - неоднозначный параметр в характеристиках точек доступа, роутеров, и т. п. (впрочем, как и мощность, на самом деле). В реальности он зависит от скорости передачи сигнала и в характеристиках оборудования обычно указан не одной цифрой, а целой таблицей:


На скриншоте из спецификации перечислены различные параметры передачи сигнала WiFi (MCS0, MCS1 и т. д.) и то, какую мощность и чувствительность сигнала показывает устройство с ними.

Здесь мы упираемся в еще один вопрос - что означают все эти аббревиатуры (MCS0, MCS1, 64-QAM и т. д.) в спецификациях , и как нам все-таки с их помощью определить чувствительность точки?

Что такое MCS (Modulation and Coding Scheme)?

MCS в переводе с английского расшифровывается как "модуляции и схемы кодирования". В обиходе его иногда называют просто "модуляции", хотя в отношении MCS это не совсем верно.

Для согласования пространственных потоков между различными устройствами и повышения эффективности передачи в радиотехнике уже довольно давно используются модуляции сигнала. Модуляция - это когда на несущую частоту накладывается сигнал с информацией, видоизмененный определенным образом (шифрование, изменение амплитуды, фазы и т. д.).

В результате получается модулированный сигнал. Со временем изобретаются все новые, более эффективные методы модуляции.

Но MCS-индекс, который устанавливается стандартами IEEE, означает не просто модуляцию сигнала, а совокупность параметров его передачи:

  • тип модуляции,
  • скорость кодирования информации,
  • количество использованных при передаче пространственных потоков (антенн),
  • ширину канала при передаче,
  • длительность защитного интервала.

Результатом является определенная канальная скорость, получаемая при передаче сигнала с учетом каждой из таких совокупностей.

Например, если мы выберем из вышеприведенной спецификации лучшее сочетание мощности (26 dBm) и чувствительности (-96 dBm) - это MCS0.

Заглянем в таблицу соответствия, и посмотрим, что за параметры передачи у MCS0. Прямо скажем, грустные параметры:

  • 1 антенна (1 пространственный поток)
  • Скорость передачи от 6,5 Мбит/сек на канале 20 МГц до 15 Мбит/сек на канале 40 МГц.
То есть вышеуказанную мощность и чувствительность сигнала точка дает только на таких низких скоростях.

При определении чувствительности (да и мощности) нам лучше ориентироваться на индексы MCS в спецификации (datasheet) с более эффективными, стандартными параметрами передачи.

Например, в той же спецификации на Nanobeam возьмем MCS15: мощность 23 dBm, чувствительность -75 dBm. В таблице этому индексу соответствует 2 пространственных потока (2 антенны) и скорость от 130 Мбит/сек на канале 20 МГц до 300 Мбит/сек на 40 МГц.

Собственно, именно на этих параметрах (2 антенны, 20 МГц, 130/144.4 Мбит/сек) в большинстве случаев и работает Nanobeam (MCS15 в поле Max Tx Rate в AirOS обычно выставлено по умолчанию).

Таким образом, стандартная, то есть используемая чаще всего, чувствительность: -75 dBm.

Однако следует учесть то, что иногда нужнее как раз не высокая скорость, а стабильность линка, или дальность, в этих случаях в настройках можно изменить модуляцию на MCS0 и другие низкие канальные скорости.

Таблицу MCS-индексов (или таблицу скоростей, как ее иногда называют) также используют для обратного поиска: просчитывают, какой скорости можно добиться на определенной мощности и чувствительности.

Ширина полосы (Channel Sizes)

В WiFi для передачи данных используется разделение всей частоты на каналы. Это позволяет упорядочить распределение радиочастотного эфира между разными устройствами - каждое оборудование может выбрать для работы менее зашумленный канал.

Упрощенно такое разделение можно сравнить с шоссе. Представьте, что было бы, если вся дорога была одной сплошной полосой (пусть даже односторонней) с потоком машин. А вот 3-4 полосы уже вносят определенный порядок в движение.

Складываем и делим. Стандартная ширина канала в WiFi - 20 МГц. Начиная с 802.11n была предложена и регламентирована возможность объединения каналов. Берем 2 канала по 20 МГц и получаем 1 на 40 МГц. Для чего? Для увеличения скорости и пропускной способности. Шире полоса - больше данных можно передать.

Недостаток широких каналов: больше помех и меньшее расстояние передачи данных.

Существует также обратная модификация каналов производителями: уменьшение их ширины: 5, 10 МГц. Узкие каналы дают большую дальность передачи, но меньшую скорость.

Модифицированная ширина канала (уменьшенная или увеличенная) и есть ширина полосы .

На что влияет: на пропускную способность и "дальнобойность" сигнала, наличие нескольких полос - на возможность тонкой подстройки этих характеристик.

Усиление антенны (Gain)

Это еще один важный параметр, который влияет на дальность сигнала и пропускную способность.


сайт

Так что лишний раз повторяться не будем, а лучше отметим дополнительную функциональность, которой ранее не было. Теперь при первом входе в веб-интерфейс запускается мастер настройки доступа в Интернет. Пользователю предлагается либо вручную выставить все параметры, либо просто выбрать город и имя провайдера, а затем ввести учётные данные, если таковые требуются для подключения. Списки городов и провайдеров пока не очень велики.

Для NETGEAR Centria WNDR4700 всё так же доступен дополнительный набор утилит Genie для быстрого доступа к некоторым настройкам, удалённого проигрывания медиафайлов, функции родительского контроля, беспроводной печати с iOS-устройств и так далее. Из новшеств стоит отметить функцию генерации QR-кода для быстрого подключения к беспроводной сети мобильных клиентов. Утилиты доступны для Windows, Mac OS X, Android и iOS. Также поддерживается и набор функций ReadySHARE для доступа к данным на накопителях и принтера/МФУ, подключённых к роутеру. К ним же относятся встроенный DLNA-сервер и поддержка Time Machine. Есть ещё один «облачный» сервис под названием ReadySHARE Cloud, который тоже открывает удалённый доступ к файлам на накопителях. Причём мобильные версии ПО платные и, судя по отзывам, далеки от идеала.



Что касается возможности NAS-составляющей, то тут, в общем, всё стандартно. Можно открыть сетевой доступ к любым папкам или разделам на HDD, добавить пользователей, указать, каким пользователям будут доступны те или иные каталоги, и так далее. Доступ к файлам из локальной сети возможен по SMB, HTTP и FTP, а из внешней - только по HTTPS и FTP. В расширенных настройках можно отформатировать внутренний жёсткий диск и просмотреть его S.M.A.R.T.-данные. По умолчанию создаётся ФС EXT4, но роутер справится и с накопителем, на котором есть разделы FAT16/32, NTFS, EXT2/3/4 или HFS+. Максимальный поддерживаемый объём в последней прошивке - 3 Тбайт. Мы для очистки совести попробовали запихнуть в роутер накопитель на 4 Тбайт, но с форматированием что-то не заладилось, поэтому пришлось остановиться на диске объёмом 2 Тбайт.

А вот ещё одной функцией, притом самой очевидной, оснастили только устройства NETGEAR Centria. Речь идёт о резервном копировании. Обладатели Mac OS X, как уже говорилось, могут настроить Time Machine для работы с роутером. В Windows 7 же архивация по сети доступна только для редакций «Профессиональная» или «Максимальная». Для исправления сего упущения подойдёт утилита ReadySHARE Vault. Эта программа, которая устанавливается на Windows-машины, умеет делать бэкапы на жёсткий диск в роутере. По умолчанию она сама решает, какие файлы и с какой периодичностью надо копировать. Пользователь, конечно же, и сам может выбрать файлы и папки для резервирования, а также указать периодичность создания бэкапов или задать расписание. Опционально резервные копии можно защитить паролем.

ReadySHARE Vault неплохо интегрируется в систему. В контекстном меню появляются пункты для быстрого удаления или добавления объектов в список резервируемых. Оттуда же вызывается диалог, показывающий версии объектов, с возможностью быстрого отката к предыдущим редакциям файла. На иконках файлов и папок появляются значки, сигнализирующие о текущем состоянии резервного копирования этих объектов. А ещё в корне добавляется псевдокаталог с временной шкалой с отметками о бэкапах. Здесь можно быстро выбрать нужную версию сохранённых файлов и папок и тут же восстановить их. Помимо этого, есть небольшая утилитка для поиска файлов по имени среди всех сделанных бэкапов для последующего открытия или восстановления. В общем, неплохая замена Time Machine, пусть и не такая красивая.

Аппаратная начинка NETGEAR Centria отлична от того, что мы привыкли видеть в топовых роутерах, которые нередко строятся на базе продуктов Broadcom. В данном случае сердцем устройства является RISC-процессор, а точнее SoC AMCC APM82181 с частотой 1 ГГц и кучей «обвеса». Он нам уже встречался в другом NAS - WD My Book Live Duo . Радиомодули производства Atheros: AR9380 и AR9580. К каждому модулю подключены отдельные внутренние антенны по схеме 3T3R. Гигабитный свитч того же производителя - AR8327N. Встроенной памяти под прошивку имеется 128 Мбайт, а оперативной - в два раза больше. Неплохо? О да, технические характеристики очень хорошие, но тем более обидно, что весь потенциал аппаратной платформы прошивка не раскрывает. Чего стоит, например, добавить поддержку IP-камер, менеджера загрузок или какой-нибудь веб-сервер? Ладно, не будем о грустном.

NETGEAR Centria WNDR4700
Сетевые стандарты IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IPv4, IPv6
Скорость Wi-Fi 802.11a: 6,9, 12, 18, 24, 36, 48, 54 Мбит/с
802.11b: 1, 2, 5,5, 11 Мбит/с
802.11g: 6,9, 12, 18, 24, 36, 48, 54 Мбит/с
802.11n: до 450 Мбит/с
Чипсет/контроллеры AMCC APM82181 (1 ГГц) + Atheros AR9380 + Atheros AR9580 + Atheros AR8327N
Память 128 Мбайт NAND/256 Мбайт DDR2 SDRAM
Частоты 2,4-2,4835 ГГц /5,1-5,8 ГГц
Безопасность WPA2-PSK (AES), WPA-PSK (TKIP), WPS
Брандмауэр SPI, защита от DoS, фильтр URL/сетевых служб
Сетевые сервисы UPnP, DLNA, DHCP, DDNS, Port Triger, Virtual Server, DMZ, проброс/трансляция портов
WAN-подключение Automatic IP, Static IP, PPPoE, PPTP, L2TP; IGMP-Proxy
Гостевая сеть 1x2,4 ГГЦ,
1x5 ГГц
QoS WMM, правила для IP/MAC/Порт, приоритеты трафика, приоритеты LAN-портов/Wi-Fi
Принт-сервер Есть, AirPrint
Файл-сервер Samba, FTP, HTTP
Статистика, монитор трафика Есть, уведомления
Разъёмы и порты 4 x RJ45 10/100/1000 BaseT LAN +
1 x RJ45 10/100/1000 BaseT WAN (802.3, MDI-X),
USB 3.0 x 2
Накопители 1 x 3,5″ SATA HDD, карт-ридер SD/MMC/MS/MS Pro
Кнопки WPS, Wi-Fi, сброс настроек, питание, бэкап SD-карт
Индикаторы Питание, WAN, Wi-Fi, USB, HDD
Адаптер питания Вход AC 110-240 В 50-60 Гц,
Выход DC 12 В 5 A
Размеры, мм 256x206x85
Масса, г 870
Гарантия 2 года
Цена 9 000 рублей

Конфигурации тестовых стендов те же, что и прежде. Стационарный ПК: Intel Core i7-2600K, 12 Гбайт RAM, Killer NIC E2200 (LAN1). И K42JC с такой начинкой: Intel Pentium 6100, 6 Гбайт RAM, JMicron JMC250 (LAN2). Адаптеры родные, NETGEAR’овские - WNDA4100 (WLAN1) и WNDA3100 (WLAN2). Синтетические тесты проводились в Ixia IxChariot 6.7 с профилем High Performance Throughput (см. таблицу ниже) и с помощью iperf 1.7.0. Для Wi-Fi было включено шифрование WPA2-AES, указан автовыбор канала и выставлена скорость в 450 Мбит/с для обоих диапазонов. Прочие настройки оставлены по умолчанию.

Маршрутизатор NETGEAR WNDR4700
Потоки 1 2 4 8 16 32 64
Средняя скорость Wi-Fi 802.11n 5 ГГц, Мбит/с
WLAN1 → WLAN2 83 90 91 90 89 85 79
WLAN2 → WLAN1 87 92 92 92 90 85 73
WLAN1 ↔ WLAN2 91 93 93 91 89 83 73
LAN1 → WLAN2 214 282 276 289 262 247 229
WLAN2 → LAN1 145 200 216 217 212 215 202
LAN1 ↔ WLAN2 225 238 233 227 224 220 206
Средняя скорость Wi-Fi 802.11n 2,4 ГГц, Мбит/с
WLAN1 → WLAN2 10 14 13 14 16 22 17
WLAN2 → WLAN1 15 17 19 14 17 11 16
WLAN1 ↔ WLAN2 17 18 18 18 16 10 -
LAN1 → WLAN2 61 59 74 68 66 69 58
WLAN2 → LAN1 60 49 47 44 52 47 33
LAN1 ↔ WLAN2 60 62 50 40 44 38 31
Средняя скорость LAN, Мбит/с
LAN1 → LAN2 890 923 921 915 905 901 821
LAN2 → LAN1 730 946 948 946 948 947 945
LAN1 ↔ LAN2 (½) 605 800 796 797 734 728 746

В девственно чистом диапазоне 5 ГГц WNDR4700 показал прекрасные скорости передачи данных, а вот в 2,4-ГГц всё не так радужно. И если по маршруту LAN ↔ WLAN всё ещё более-менее прилично, то вот работа исключительно в беспроводном сегменте радости не вызывает - скорость подключения всё время плавала, а один из тестов вообще ни разу не завершился успешно. Но есть один нюанс, даже два. Во-первых, эфир несколько «загажен», так что роутер автоматически сбрасывает ширину канала до 20 МГц, да и второй адаптер поддерживает только 300 Мбит/c. Во-вторых, в расширенных настройках Wi-Fi есть интересная галочка «Включить совместное использование частот 20/40 МГц». Изначально она включена, как и должно быть в соответствии с правилами Wi-Fi Alliance. Если её снять, то устройство будет игнорировать наличие соседских сетей и работать на всю катушку. По крайней мере пытаться работать. Кажется, компания NETGEAR одной из последних сдалась и добавила эту опцию в свои роутеры.


Не заладилось и с WAN-подключениями, хотя тут всё относительно. Скорость прямого подключения оказалась в районе 360 Мбит/с. Вот тут не помешало бы аппаратное ускорение NAT. По PPPoE удалось выжать примерно 111 Мбит/с, а скорость подключений по L2TP и PPTP не преодолела отметку в 70 Мбит/с. Результаты по нынешним меркам не самые лучшие, хотя и приемлемые. Возможно, виновата прошивка (у нас была версия 1.0.0.50). Во всяком случае, как-то не верится, что это аппаратная проблема. С обязанностями NAS роутер ведь справляется, и притом неплохо. Для теста был взят HDD Hitachi Deskstar 7K3000 и отформатирован из веб-интерфейса устройства (EXT4), а к USB-порту был подключен внешний диск Apacer Share Steno AC202 (NTFS). Затем оба накопителя были подмонтированы как сетевые диски в Windows 7 x64, и на них был «натравлен» CrystalDiskMark 3.0.2 x64.

⇡ Выводы

Если рассматривать функциональность NETGEAR WNDR4700 с «роутерной» точки зрения, то здесь всё в порядке. Жаль, конечно, что мощное железо разработчики отказываются нагружать по полной, умышленно не добавляя всякие вкусности типа менеджера закачек, веб-сервера и прочих маленьких радостей пирата или гика. Хотелось бы, кроме того, иметь более высокие скорости WAN-подключений и более стабильную работу Wi-Fi в диапазоне 2,4 ГГц. По оформлению корпуса претензий нет, только не забывайте про его маркость и незамолкающий кулер.

Что же касается функций NAS, то тут вопрос спорный. Если вам нужно только простое сетевое хранилище с возможностью бекапа и проигрывания файлов по сети, то да, WNDR4700 вам подойдёт. Тем более что скорости обмена данными вполне приличные. Опять-таки даже не самый дорогой «выделенный» NAS обладает, как правило, большей функциональностью. В общем, в вопросе «Брать или не брать NETGEAR Centria?» всё очень индивидуально. Всё ж таки цена на него в России не так уж мала - около 8 500-9 000 рублей. Также есть модель NETGEAR WNDR4720, в которой уже установлен жёсткий диск ёмкостью 2 Тбайта, но она пока до наших просторов не добралась.

Реализация Wi-Fi 802.11n в современных телефонах и планшетах оставляет желать много лучшего. Новые стандарты 802.11ac и 802.11ad обещают в перспективе гигабитные скорости и обсуждаются не первый год. Broadcom и другие компании с середины 2012 г. предлагают производителям соответствующие наборы микросхем. Когда же их начнут внедрять и какие устройства получат поддержку скоростных версий Wi-Fi первыми?

Хитрости в реализации 802.11n

История перехода на новые стандарты повторяется на удивление точно. Одним из первых смартфонов в России с поддержкой черновой версии 802.11n стал HTC HD2, появившийся в 2009 году. Его скорость была лишь чуть выше, чем у смартфонов с Wi-Fi версии «g». Она соответствовала минимальной реализации версии «n» и заставляла горько усмехаться, вспоминая обещанные 600 Мбит/с. Прошли годы, окончательную версию стандарта давно утвердили, но всё осталось по-прежнему.

До сих пор большинство мобильных устройств поддерживают стандарт 802.11n в его минимальном варианте. Один канал шириной 20 МГц на частоте 2,4 ГГц – и всё. Это ограничивает теоретический предел скорости величиной 72 Мбит/с. В реальных условиях фактически демонстрируемые скорости оказываются и того меньше.

Реальная скорость подключения по Wi-Fi (изображение: anandtech.com)

Обратите внимание: версия «g» и даже «а» выглядит на практике вполне конкурентноспособной по сравнению с урезанными вариантами Wi-Fi «n». Маркетологи же любят делать отсылки к верхнему порогу стандарта – пресловутым 600 Мбит/с. Их можно было бы достичь при использовании четырёх каналов шириной по 40 МГц на частоте 5 ГГц, но такой вариант редко встречается даже в роутерах. Большинство мобильных устройств использует один или два приёмопередатчика - каждый со своей антенной. Только в единичных ноутбуках (например, MacBook Pro) можно встретить три. Соответственно, максимальная скорость составляет 3 x 150 = 450 Мбит/с. Думаю, в мире нет ни одного смартфона или планшета с тремя или четырьмя антеннами.

Реальная скорость передачи данных по Wi-Fi - продолжение (изображение: anandtech.com)

Совсем недавно некоторые модели смартфонов стали поддерживать скорость 150 Мбит/с. На MWC 2013 был Huawei Ascend P2 – смартфон среднего класса с двумя антеннами Wi-Fi , что преподносилось как выгодное отличие. Чуть ранее подобным образом представили Ascend Mate. Однако помимо удвоения узких каналов можно увеличить ширину единственного до 40 МГц, и результат получится тот же самый – 150 Мбит/с.

Примечательно, что от цены устройства скорость Wi-Fi не зависит. Работать по Wi-Fi «n» вдвое быстрее большинства других умеет не только iPhone 5 и Huawei Ascend Mate, но и бюджетный Philips W626. Проблема ещё и в том, что производители обычно никак не указывают особенности конкретной модели . В спецификациях везде пишут «802.11 b/g/n» без каких-либо уточнений.

Версия «ad» как конкурент Bluetooth

C Wi-Fi следующих стандартов ситуация ещё интереснее. Вопреки обозначению, 802.11ad (WiGig) не будет преемником 802.11ac. Этот параллельно развивающийся стандарт создан с нуля и вскоре, вероятно, заменит Bluetooth. Его задачей ставится высокоскоростная беспроводная связь на малых расстояниях. В таблице ниже представлены некоторые особенности реализации и теоретические пределы скорости для разных версий Wi-Fi при использовании одного канала.

Ориентировочно стандарт 802.11ad будет лимитирован скоростью до 7 Гбит/с, но рассматривается и возможность её дальнейшего увеличения. В силу особенностей распространения высокочастотного сигнала, устройства должны находиться в прямой видимости и в пределах нескольких метров друг от друга. В отличие от 802.11ac, WiGig не поддерживает обратную совместимость с другими версиями Wi-Fi, так как его рабочая частота составляет 60 ГГц.

Версия «ac» - ожидания и опасения

Версию «n» к середине года начнёт вытеснять 802.11ac. Его разрабатывали с 2008 г. и последняя черновая версия была объявлена только через пять лет. Сейчас готовность стандарта оценивается как 95%, чтобы это ни значило. Не дожидаясь окончательного официального утверждения, производители начали выпускать соответствующие микросхемы год назад. Практика показала, что такой подход был более чем оправдан в случае версии «n». Аппаратная платформа не подвергалась модификации, а программные изменения легко внести, выпустив обновление прошивки. Одной из первых модуль для работы по стандарту 802.11ac (обратно совместимый с b/g/n) выпустила компания TriQuint. Появившийся в середине 2012 года чип TQP6M0917 имеет габариты 4 х 4 х 0,5 мм, что позволяет использовать его в мобильной технике.

По мнению представителей другой крупной компании, производящей наборы микросхем для модулей связи (Broadcom), первые устройства с поддержкой 802.11ac массово появятся ко второй половине 2013 г. С такой оценкой согласны и представители Qualcomm. Традиционно первыми будут маршрутизаторы и сетевые адаптеры . Смартфоны и планшеты с 802.11ac станут привычными несколько позже, но их отдельные представители поступят в продажу уже в самое ближайшее время.

Скоростной Wi-Fi пятого поколения ожидается в iPhone 5S (символично) и всех смартфонах на платформе Qualcomm Snapdragon 800. По аналогии с историей внедрения версии «n», скорее всего, речь идёт о базовой реализации и одноканальных решениях. В зависимости от ширины канала (от 80 до 160 МГц) скорость новых смартфонов по Wi-Fi будет ограничена теоретическим пределом в 433 или 866 Мбит/с.

На скорости 433 Мбит/с будут подключаться смартфоны с чипами Broadcom BCM4335, Redpine Signals RS9117 и Qualcomm Atheros WCN3680. Более высокие скорости пока анонсированы только в чипах для ноутбуков и маршрутизаторов.

Обратная совместимость оставляет ещё одну лазейку для недобросовестного маркетинга. Устройство с поддержкой черновой версии 802.11ac может использовать привычную сейчас ширину канала в 20 и 40 МГц. При такой формальной реализации скоростная планка опустится ниже минимальных 433 Мбит/с.

Среди других важных особенностей стандарта отмечается методика улучшения качества связи Beamforming. Она позволяет учесть разницу фаз переотражённых сигналов и компенсировать возникающие потери скорости. К сожалению, Beamforming предполагает использование нескольких антенн, что пока ограничивает область его применения ноутбуками.

Предполагается, что в ряде сценариев использования новый стандарт увеличит время автономной работы. Передавая тот же объём данных быстрее, чип сможет раньше переходить в режим пониженного энергопотребления.

Как видно из представленных примеров, технически ничто не мешает увеличить скорость передачи данных по Wi-Fi уже сейчас. Для этого не требуется внедрять новые стандарты - потенциал существующей версии «n» в мобильных устройствах не раскрыт и наполовину. Если для вас критична скорость, попробуйте проверить смартфон или планшет, подключив его к приличному роутеру.

Реализация Wi-Fi 802.11n в современных телефонах и планшетах оставляет желать много лучшего. Новые стандарты 802.11ac и 802.11ad обещают в перспективе гигабитные скорости и обсуждаются не первый год. Broadcom и другие компании с середины 2012 г. предлагают производителям соответствующие наборы микросхем. Когда же их начнут внедрять и какие устройства получат поддержку скоростных версий Wi-Fi первыми?

Хитрости в реализации 802.11n

История перехода на новые стандарты повторяется на удивление точно. Одним из первых смартфонов в России с поддержкой черновой версии 802.11n стал HTC HD2, появившийся в 2009 году. Его скорость была лишь чуть выше, чем у смартфонов с Wi-Fi версии «g». Она соответствовала минимальной реализации версии «n» и заставляла горько усмехаться, вспоминая обещанные 600 Мбит/с. Прошли годы, окончательную версию стандарта давно утвердили, но всё осталось по-прежнему.

До сих пор большинство мобильных устройств поддерживают стандарт 802.11n в его минимальном варианте. Один канал шириной 20 МГц на частоте 2,4 ГГц – и всё. Это ограничивает теоретический предел скорости величиной 72 Мбит/с. В реальных условиях фактически демонстрируемые скорости оказываются и того меньше.

Реальная скорость подключения по Wi-Fi (изображение: anandtech.com)

Обратите внимание: версия “g” и даже “а” выглядит на практике вполне конкурентноспособной по сравнению с урезанными вариантами Wi-Fi “n”. Маркетологи же любят делать отсылки к верхнему порогу стандарта – пресловутым 600 Мбит/с. Их можно было бы достичь при использовании четырёх каналов шириной по 40 МГц на частоте 5 ГГц, но такой вариант редко встречается даже в роутерах. Большинство мобильных устройств использует один или два приёмопередатчика – каждый со своей антенной. Только в единичных ноутбуках (например, MacBook Pro) можно встретить три. Соответственно, максимальная скорость составляет 3 x 150 = 450 Мбит/с. Думаю, в мире нет ни одного смартфона или планшета с тремя или четырьмя антеннами.

Реальная скорость передачи данных по Wi-Fi – продолжение (изображение: anandtech.com)

Совсем недавно некоторые модели смартфонов стали поддерживать скорость 150 Мбит/с. На MWC 2013 был Huawei Ascend P2 – смартфон среднего класса с двумя антеннами Wi-Fi, что преподносилось как выгодное отличие. Чуть ранее подобным образом представили Ascend Mate. Однако помимо удвоения узких каналов можно увеличить ширину единственного до 40 МГц, и результат получится тот же самый – 150 Мбит/с.

Примечательно, что от цены устройства скорость Wi-Fi не зависит. Работать по Wi-Fi “n” вдвое быстрее большинства других умеет не только iPhone 5 и Huawei Ascend Mate, но и бюджетный Philips W626. Проблема ещё и в том, что производители обычно никак не указывают особенности конкретной модели. В спецификациях везде пишут “802.11 b/g/n” без каких-либо уточнений.

Версия “ad” как конкурент Bluetooth

C Wi-Fi следующих стандартов ситуация ещё интереснее. Вопреки обозначению, 802.11ad (WiGig) не будет преемником 802.11ac. Этот параллельно развивающийся стандарт создан с нуля и вскоре, вероятно, заменит Bluetooth. Его задачей ставится высокоскоростная беспроводная связь на малых расстояниях. В таблице ниже представлены некоторые особенности реализации и теоретические пределы скорости для разных версий Wi-Fi при использовании одного канала.

Ориентировочно стандарт 802.11ad будет лимитирован скоростью до 7 Гбит/с, но рассматривается и возможность её дальнейшего увеличения. В силу особенностей распространения высокочастотного сигнала, устройства должны находиться в прямой видимости и в пределах нескольких метров друг от друга. В отличие от 802.11ac, WiGig не поддерживает обратную совместимость с другими версиями Wi-Fi, так как его рабочая частота составляет 60 ГГц.

Версия “ac” – ожидания и опасения

Версию “n” к середине года начнёт вытеснять 802.11ac. Его разрабатывали с 2008 г. и последняя черновая версия была объявлена только через пять лет. Сейчас готовность стандарта оценивается как 95%, чтобы это ни значило. Не дожидаясь окончательного официального утверждения, производители начали выпускать соответствующие микросхемы год назад. Практика показала, что такой подход был более чем оправдан в случае версии “n”. Аппаратная платформа не подвергалась модификации, а программные изменения легко внести, выпустив обновление прошивки. Одной из первых модуль для работы по стандарту 802.11ac (обратно совместимый с b/g/n) выпустила компания TriQuint. Появившийся в середине 2012 года чип TQP6M0917 имеет габариты 4 х 4 х 0,5 мм, что позволяет использовать его в мобильной технике.

По мнению представителей другой крупной компании, производящей наборы микросхем для модулей связи (Broadcom), первые устройства с поддержкой 802.11ac массово появятся ко второй половине 2013 г. С такой оценкой согласны и представители Qualcomm. Традиционно первыми будут маршрутизаторы и сетевые адаптеры. Смартфоны и планшеты с 802.11ac станут привычными несколько позже, но их отдельные представители поступят в продажу уже в самое ближайшее время.

Скоростной Wi-Fi пятого поколения ожидается в iPhone 5S (символично) и всех смартфонах на платформе Qualcomm Snapdragon 800. По аналогии с историей внедрения версии «n», скорее всего, речь идёт о базовой реализации и одноканальных решениях. В зависимости от ширины канала (от 80 до 160 МГц) скорость новых смартфонов по Wi-Fi будет ограничена теоретическим пределом в 433 или 866 Мбит/с.

На скорости 433 Мбит/с будут подключаться смартфоны с чипами Broadcom BCM4335, Redpine Signals RS9117 и Qualcomm Atheros WCN3680. Более высокие скорости пока анонсированы только в чипах для ноутбуков и маршрутизаторов.

Обратная совместимость оставляет ещё одну лазейку для недобросовестного маркетинга. Устройство с поддержкой черновой версии 802.11ac может использовать привычную сейчас ширину канала в 20 и 40 МГц. При такой формальной реализации скоростная планка опустится ниже минимальных 433 Мбит/с.

Среди других важных особенностей стандарта отмечается методика улучшения качества связи Beamforming. Она позволяет учесть разницу фаз переотражённых сигналов и компенсировать возникающие потери скорости. К сожалению, Beamforming предполагает использование нескольких антенн, что пока ограничивает область его применения ноутбуками.

Предполагается, что в ряде сценариев использования новый стандарт увеличит время автономной работы. Передавая тот же объём данных быстрее, чип сможет раньше переходить в режим пониженного энергопотребления.

Как видно из представленных примеров, технически ничто не мешает увеличить скорость передачи данных по Wi-Fi уже сейчас. Для этого не требуется внедрять новые стандарты – потенциал существующей версии “n” в мобильных устройствах не раскрыт и наполовину. Если для вас критична скорость, попробуйте проверить смартфон или планшет, подключив его к приличному роутеру.

1. Измеряйте скорость, используя корректная меру

Первая ошибка многих людей - определение как быстро работает их беспроводная связь на основе пункта "Скорость" в окне свойств беспроводной сети Windows.

Рисунок 1. Не обращайте внимание на это число

На самом деле, это число лишь отдаленно связано с фактической пропускной способностью беспроводного соединения. Тут выводится значение, которое указывает выводить драйвер беспроводного адаптера - link rate .

Link rate называют еще PHY (physical layer - физический уровень) - максимальная скорость, с которой данные могут перемещаться через беспроводную связь между беспроводным клиентом и беспроводным маршрутизатором. Для сетевой карты 10/100 Ethernet, вы обычно видите скорость 100 Mbps, а для гигабитной сетевухи, вы увидите 1000 Mbps (если вы подключены к гигабитному порту коммутатора).

Скорость получателя на прикладном уровне (application layer) будет гораздо ниже, чем скорость физического уровня. В самом деле, link rate "300 Mbps" обычно соответствует скорости от 50 до 90 Mbps на уровне TCP/UDP (в зависимости от используемого 802.11n роутера и адаптера).

Причина столь существенной разницы - большие "накладные расходы", связанные с беспроводными соединениями (много битов используются для передачи информации другим, а не целевым получателям; плюс данные повторной передачи в связи с ненадежностью беспроводной связи)

Чтобы получить более точное измерение скорости беспроводного соединения, необходимо использовать методы, который на самом деле измеряет скорость доставки. А именно:

  • расчет скорости делением размера файла на время передачи. LAN Speed Test делает то же самое автоматически под Windows
  • копирование файлов и использование Networking monitor (Start > Run perfmon.msc ) в XP
  • использование NetMeter во время просмотра потокового видео или передачи файлов
  • использование в командной строке Iperf и графической оболочки под нее Jperf . Удобный графический интерфейс + роутер cisco на удаленной стороне позволяют проверить скорость канала связи
Само собой, какой бы метод вы не использовали, вы должны сначала попробовать тот же метод для проводного соединения что и для беспроводного. Это позволит узнать, что вы теряете, используя беспроводное соединение.