Как проводится статистический анализ уровня регрессии. Регрессионная статистика. Применение линии регрессии для прогноза

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении наблюдается n i {\displaystyle n_{i}} значений y i 1 …y in 1 величины y , то зависимость средних арифметических y ¯ i = (y i 1 + . . . + y i n 1) / n i {\displaystyle {\bar {y}}_{i}=(y_{i1}+...+y_{in_{1}})/n_{i}} от x = x i {\displaystyle x=x_{i}} и является регрессией в статистическом понимании этого термина .

Энциклопедичный YouTube

  • 1 / 5

    Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

    Описание

    Допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

    g (x) = E (Y ∣ X = x) . {\displaystyle g(x)=E(Y\mid X=x).} E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) , {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1}),} v a r (Y ∣ X = x) = σ 2 2 (1 − ϱ 2) . {\displaystyle \mathrm {var} (Y\mid X=x)=\sigma _{2}^{2}(1-\varrho ^{2}).}

    В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения – это линейная аппроксимация истинного уравнения регрессии.

    В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

    Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

    Линейная регрессия

    Представим зависимость y от x в виде линейной модели первого порядка:

    y = β 0 + β 1 x + ε . {\displaystyle y=\beta _{0}+\beta _{1}x+\varepsilon .}

    Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

    y i ^ = b 0 + b 1 x i , i = 1 , … , n {\displaystyle {\widehat {y_{i}}}=b_{0}+b_{1}x_{i},i=1,\dots ,n}

    где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели. Определим также e i = y i − y i ^ {\displaystyle e_{i}=y_{i}-{\widehat {y_{i}}}} - значение ошибки аппроксимации для i {\displaystyle i} -го наблюдения.

    Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

    b 1 = ∑ i = 1 n (x i − x ¯) (y i − y ¯) ∑ i = 1 n (x i − x ¯) 2 = c o v (x , y) σ x 2 ; {\displaystyle b_{1}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}={\frac {\mathrm {cov} (x,y)}{\sigma _{x}^{2}}};} b 0 = y ¯ − b 1 x ¯ ; {\displaystyle b_{0}={\bar {y}}-b_{1}{\bar {x}};} s e 2 = ∑ i = 1 n (y i − y ^) 2 n − 2 ; {\displaystyle s_{e}^{2}={\frac {\sum _{i=1}^{n}(y_{i}-{\widehat {y}})^{2}}{n-2}};} s b 0 = s e 1 n + x ¯ 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{b_{0}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {{\bar {x}}^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};} s b 1 = s e 1 ∑ i = 1 n (x i − x ¯) 2 , {\displaystyle s_{b_{1}}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}},}

    здесь средние значения определяются как обычно: x ¯ = ∑ i = 1 n x i n {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}x_{i}}{n}}} , y ¯ = ∑ i = 1 n y i n {\displaystyle {\bar {y}}={\frac {\sum _{i=1}^{n}y_{i}}{n}}} и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

    Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t = b / s b {\displaystyle t=b/s_{b}} . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем, b 1 {\displaystyle b_{1}} - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 {\displaystyle b_{0}} , то прямая проходит через начало координат и оценка углового коэффициента равна

    b = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 {\displaystyle b={\frac {\sum _{i=1}^{n}x_{i}y_{i}}{\sum _{i=1}^{n}x_{i}^{2}}}} ,

    а её стандартной ошибки

    s b = s e 1 ∑ i = 1 n x i 2 . {\displaystyle s_{b}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}x_{i}^{2}}}}.}

    Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря, истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии y ^ {\displaystyle {\widehat {y}}} . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

    s y ^ = s e 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{\widehat {y}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Теперь можно вычислить -процентный доверительный интервал для значения уравнения регрессии в точке x :

    y ^ − t (1 − α / 2 , n − 2) s y ^ < y < y ^ + t (1 − α / 2 , n − 2) s y ^ {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{\widehat {y}},

    где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

    s Y = s e 1 m + 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{Y}=s_{e}{\sqrt {{\frac {1}{m}}+{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Здесь m - кратность измерения y при данном x . И 100 ⋅ (1 − α 2) {\displaystyle 100\cdot \left(1-{\frac {\alpha }{2}}\right)} -процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

    y ^ − t (1 − α / 2 , n − 2) s Y < y < y ^ + t (1 − α / 2 , n − 2) s Y {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{Y}.

    На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

    Еще немного статистики

    Можно строго доказать, что, если условное матожидание E (Y ∣ X = x) {\displaystyle E(Y\mid X=x)} некоторой двумерной случайной величины (X, Y ) является линейной функцией от x {\displaystyle x} , то это условное матожидание обязательно представимо в виде E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1})} , где E (X )=μ 1 , E (Y )=μ 2 , var(X )=σ 1 2 , var(Y )=σ 2 2 , cor(X, Y )=ρ.

    Более того, для уже упомянутой ранее линейной модели Y = β 0 + β 1 X + ε {\displaystyle Y=\beta _{0}+\beta _{1}X+\varepsilon } , где X {\displaystyle X} и - независимые случайные величины, а ε {\displaystyle \varepsilon } имеет нулевое матожидание (и произвольное распределение), можно доказать, что E (Y ∣ X = x) = β 0 + β 1 x {\displaystyle E(Y\mid X=x)=\beta _{0}+\beta _{1}x} . Тогда с помощью указанного ранее равенства можно получить формулы для и : β 1 = ϱ σ 2 σ 1 {\displaystyle \beta _{1}=\varrho {\frac {\sigma _{2}}{\sigma _{1}}}} ,

    β 0 = μ 2 − β 1 μ 1 {\displaystyle \beta _{0}=\mu _{2}-\beta _{1}\mu _{1}} .

    Если откуда-то априори известно, что множество случайных точек на плоскости порождается линейной моделью, но с неизвестными коэффициентами β 0 {\displaystyle \beta _{0}} и β 1 {\displaystyle \beta _{1}} , можно получить точечные оценки этих коэффициентов по указанным формулам. Для этого в эти формулы вместо матожиданий, дисперсий и корреляции случайных величин X и Y нужно подставить их несмещенные оценки. Полученные формулы оценок в точности совпадут с формулами, выведенными на основе метода наименьших квадратов.

    Следующий пример использует файл данных Poverty. sta. Открыть его можно с помощью меню Файл, выбрав команду Открыть; наиболее вероятно, что этот файл данных находится в директории /Examples/Datasets. Данные основаны на сравнении результатов переписи 1960 и 1970 годов для случайной выборки из 30 округов. Имена округов введены в качестве идентификаторов наблюдений.

    Следующая информация по каждой переменной приводится в электронной таблице Редактор спецификаций переменных (открывающийся при выборе команды Все спецификации переменных... в меню Данные).

    Цель исследования. Мы проанализируем корреляты бедности (т.е. предикторы, "сильно" коррелирующие с процентом семей, живущих за чертой бедности). Таким образом, будем рассматривать переменную 3 (Pt_Poor), как зависимую или критериальную переменную, а все остальные переменные - в качестве независимых переменных или предикторов.

    Начальный анализ. Когда вы выбираете команду Множественной регрессии с помощью меню Анализ, открывается стартовая панель модуля Множественная регрессия. Вы можете задать регрессионное уравнение щелчком мыши по кнопке Переменные во вкладке Быстрый стартовой панели модуля Множественная регрессия. В появившемся окне Выбора переменных выберите Pt_Poor в качестве зависимой переменной, а все остальные переменные набора данных - в качестве независимых. Во вкладке Дополнительно отметьте также опции Показывать описательные статистики, корр. матрицы.



    Теперь нажмите OK этого диалогового окна, после чего откроется диалоговое окно Просмотр описательных статистик. Здесь вы можете просмотреть средние и стандартные отклонения, корреляции и ковариации между переменными. Отметим, что это диалоговое окно доступно практически из всех последующих окон модуля Множественная регрессия, так что вы всегда сможете вернуться назад, чтобы посмотреть на описательные статистики определенных переменных.

    Распределение переменных. Сначала изучим распределение зависимой переменной Pt_Poor по округам. Нажмите Средние и стд.отклонения для показа таблицы результатов.


    Выберите Гистограммы в меню Графика, чтобы построить гистограмму для переменной Pt_Poor (во вкладке Дополнительно диалогового окна 2М Гистограммы установите опцию Число категорий в строке Категории равной 16). Как видно ниже, распределение этой переменной чем-то отличается от нормального распределения. Коэффициенты корреляции могут оказаться существенно завышенными или заниженными при наличии в выборке существенных выбросов. Однако, хотя два округа (две самые правые колонки) имеют более высокий процент семей, проживающих за чертой бедности, чем это можно было бы ожидать в соответствии с нормальным распределением, они все еще, как нам кажется, находятся "в рамках допустимого".



    Это решение является в определенной степени субъективным; эмпирическое правило состоит в том, что беспокойство требуется проявлять только тогда, когда наблюдение (или наблюдения) лежат вне интервала, заданного средним значением ± 3 стандартных отклонения. В этом случае будет разумно повторить критическую (с точки зрения влияния выбросов) часть анализа с выбросами и без них, с тем, чтобы удостовериться в отсутствии их влияния на характер взаимных корреляций. Вы также можете просмотреть распределение этой переменной, щелкнув мышкой на кнопке Диаграмма размаха во вкладке Дополнительно диалогового окна Просмотр описательных статистик, выбрав переменную Pt_Poor. Далее, выберите опцию Медиана/квартили/размах в диалоговом окне Диаграммы размаха и нажмите кнопку OK.


    (Заметим, что определенный метод вычисления медианы и квартилей может быть выбран для всей "системы" в диалоговом окне Параметры в меню Сервис.)

    Диаграммы рассеяния. Если имеются априорные гипотезы о связи между определенными переменными, на этом этапе может оказаться полезным вывести соответствующую диаграмму рассеяния. Например, посмотрим на связь между изменением популяции и процентом семей, проживающих за чертой бедности. Было бы естественно ожидать, что бедность приводит к миграции населения; таким образом, должна наблюдаться отрицательная корреляция между процентом семей, проживающих за чертой бедности, и изменением популяции.

    Возвратимся к диалоговому окну Просмотр описательных статистик и щелкнем мышкой по кнопке Корреляции во вкладке Быстрый для отображения таблицы результатов с корреляционной матрицей.



    Корреляции между переменными могут быть отображены также и на матричной диаграмме рассеяния. Матричная диаграмма рассеяния для выбранных переменных может быть получена щелчком мыши по кнопке Матричный график корреляций во вкладке Дополнительно диалогового окна Просмотр описательных статистик и последующим выбором интересующих переменных.

    Задание множественной регрессии. Для выполнения регрессионного анализа от вас требуется только щелкнуть по кнопке OK в диалоговом окне Просмотр описательных статистик и перейти в окно Результаты множественной регрессии. Стандартный регрессионный анализ (со свободным членом) будет выполнен автоматически.

    Просмотр результатов. Ниже изображено диалоговое окно Результаты множественной регрессии. Общее уравнение множественной регрессии высоко значимо (см. главу Элементарные понятия статистики по поводу обсуждения проверки статистической значимости). Таким образом, зная значения независимых переменных, можно "предсказать" предиктор, связанный с бедностью, лучше, чем угадывая его чисто случайно.



    Регрессионные коэффициенты. Чтобы узнать, какие из независимых переменных дают больший вклад в предсказание предиктора, связанного с бедностью, изучим регрессионные (или B) коэффициенты. Щелкните мышкой по кнопке Итоговая таблица регрессии во вкладке Быстрый диалогового окна Результаты множественной регрессии для вывода таблицы результатов с этими коэффициентами.



    Эта таблица показывает стандартизованные регрессионные коэффициенты (Бета) и обычные регрессионные коэффициенты (B). Бета-коэффициенты - это коэффициенты, которые получатся, если предварительно стандартизовать все переменные к среднему 0 и стандартному отклонению 1. Таким образом, величина этих Бета-коэффициентов позволяет сравнивать относительный вклад каждой независимой переменной в предсказание зависимой переменной. Как видно из таблицы результатов, изображенной выше, переменные Pop_Chng, Pt_Rural и N_Empld являются наиболее важными предикторами для бедности; из них только первые два статистически значимы. Регрессионный коэффициент для Pop_Chng отрицателен; т.е. чем меньше прирост популяция, тем большее число семей живут ниже уровня бедности в соответствующем округе. Вклад в регрессию для Pt_Rural положителен; т.е. чем больше процент сельского населения, тем выше уровень бедности.

    Частные корреляции. Другой путь изучения вкладов каждой независимой переменной в предсказание зависимой переменной состоит в вычислении частных и получастных корреляций (щелкните на кнопке Частные корреляции во вкладке Дополнительно диалогового окна Результаты множественной регрессии). Частные корреляции являются корреляциями между соответствующей независимой переменной и зависимой переменной, скорректированными относительно других переменных. Таким образом, это корреляция между остатками после корректировки относительно независимых переменных. Частная корреляция представляет самостоятельный вклад соответствующей независимой переменной в предсказание зависимой переменной.



    Получастные корреляция являются корреляциями между соответствующей независимой переменной, скорректированной относительно других переменных, и исходной (нескорректированной) зависимой переменной. Таким образом, получастная корреляция является корреляцией соответствующей независимой переменной после корректировки относительно других переменных, и нескорректированными исходными значениями зависимой переменной. Иначе говоря, квадрат получастной корреляции является показателем процента Общей дисперсии, самостоятельно объясняемой соответствующей независимой переменной, в то время как квадрат частной корреляции является показателем процента остаточной дисперсии, учитываемой после корректировки зависимой переменной относительно независимых переменных.

    В этом примере частные и получастные корреляции имеют близкие значения. Однако иногда их величины могут различаться значительно (получастная корреляция всегда меньше). Если получастная корреляция очень мала, в то время как частная корреляция относительно велика, то соответствующая переменная может иметь самостоятельную "часть" в объяснении изменчивости зависимой переменной (т.е. "часть", которая не объясняется другими переменными). Однако в смысле практической значимости, эта часть может быть мала, и представлять только небольшую долю от общей изменчивости (подробнее см., например, в работах Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Neter, Wasserman, and Kutner, 1985; Pedhazur, 1973; или Stevens, 1986).

    Анализ остатков. После подбора уравнения регрессии всегда полезно изучить полученные предсказанные значения и остатки. Например, экстремальные выбросы могут существенно сместить результаты и привести к ошибочным заключениям. Во вкладке Остатки/предложения/наблюдаемые нажмите кнопку Анализ остатков для перехода в соответствующее диалоговое окно.

    Построчный график остатков. Эта опция диалогового окна предоставляет вам возможность выбрать один из возможных типов остатков для построения построчного графика. Обычно, следует изучить характер исходных (нестандартизованных) или стандартизованных остатков для идентификации экстремальных наблюдений. В нашем примере, выберите вкладку Остатки и нажмите кнопку Построчные графики остатков; по умолчанию будет построен график исходных остатков; однако, вы можете изменить тип остатков в соответствующем поле.



    Масштаб, используемый в построчном графике в самой левой колонке, задается в терминах сигмы, т.е. стандартного отклонения остатков. Если один или несколько наблюдений попадают за границы ± 3 * сигма, то, вероятно, следует исключить соответствующие наблюдения (это легко достигается с помощью условий отбора) и выполнить анализ снова, чтобы убедиться в отсутствии смещения ключевых результатов, вызванного этими выбросами в данных.

    Построчный график выбросов. Быстрый способ идентификации выбросов состоит в использовании опции График выбросов во вкладке Выбросы. Вы можете выбрать просмотр всех стандартных остатков, выпадающих за границы ± 2-5 сигма, или просмотр 100 наиболее выделяющихся наблюдений, выбранных в поле Тип выброса во вкладке Выбросы. При использовании опции Стандартный остаток (>2*сигма) в нашем примере какие-либо выбросы не заметны.

    Расстояния Махаланобиса. Большинство учебников по статистике отводят определенное место для обсуждения темы выбросов и остатков для зависимой переменной. Однако роль выбросов для набора независимых переменных часто упускается из виду. Со стороны независимых переменных, имеется список переменных, участвующий с различными весами (регрессионные коэффициенты) в предсказании зависимой переменной. Независимые переменные можно представить себе в виде точек некоторого многомерного пространства, в котором может располагаться каждое наблюдение. Например, если вы имеете две независимые переменные с равными регрессионными коэффициентами, то можно построить диаграмму рассеяния этих двух переменных и расположить каждое наблюдение на этом графике. Вы можете затем нарисовать точку средних значений обоих переменных и вычислить расстояния от каждого наблюдения до этого среднего (называемого теперь центроидом) в этом двумерном пространстве; в этом состоит концептуальная идея, стоящая за вычислением расстояний Махаланобиса. Теперь посмотрим на эти расстояния, отсортированные по величине, с целью идентификации экстремальных наблюдений по независимым переменным. В поле Тип выбросов отметьте опцию расстояний Махаланобиса и нажмите кнопку Построчный график выбросов. Полученный график показывает расстояния Махаланобиса, отсортированные в порядке убывания.



    Отметим, что округ Shelby оказывается в чем-то выделяющимся по сравнению с другими округами на графике. Если посмотреть на исходные данные, можно обнаружить, что в действительности округ Shelby - значительно больший по размеру округ с большим числом людей, занятых сельским хозяйством (переменная N_Empld), и намного более весомой популяцией афроамериканцев. Вероятно, было бы разумно выражать эти числа в процентах, а не в абсолютных значениях, в этом случае расстояние Махаланобиса округа Shelby от других округов в данном примере не было бы столь велико. Однако мы получили, что округ Shelby оказывается явным выбросом.

    Удаленные остатки. Другой очень важной статистикой, позволяющей оценить масштаб проблемы выбросов, являются удаленные остатки. Они определяются как стандартизованные остатки для соответствующих наблюдений, которые получились бы при исключении соответствующих наблюдений из анализа. Напомним, что процедура множественной регрессии подбирает прямую линию для выражения взаимосвязи между зависимой и независимыми переменными. Если одно из наблюдений является очевидным выбросом (как округ Shelby в этих данных), то линия регрессии стремиться "приблизится" к этому выбросу, с тем чтобы учесть его, насколько это возможно. В результате, при исключении соответствующего наблюдения, возникнет совершенно другая линия регрессии (и B-коэффициенты). Поэтому, если удаленный остаток сильно отличается от стандартизованного остатка, у вас есть основания полагать, что результаты регрессионного анализа существенно смещены соответствующим наблюдением. В данном примере удаленный остаток для округа Shelby является выбросом, который существенно влияет на анализ. Вы можете построить диаграмму рассеяния остатков относительно удаленных остатков с помощью опции Остатки и удал. остатки во вкладке Диаграммы рассеяния. Ниже на диаграмме рассеяния явно заметен выброс.


    STATISTICA предоставляет интерактивное средство для удаления выбросов (Кисть на панели инструментов для графики;). Позволяющее экспериментировать с удалением выбросов и позволяющее сразу же увидеть их влияние на линию регрессии. Когда это средство активизировано, курсор меняется на крестик и рядом с графиком высвечивается диалоговое окно Закрашивание. Вы можете (временно) интерактивно исключать отдельные точки данных из графика, отметив (1) опцию Автообновление и (2) поле Выключить из блока Операция; а затем щелкнув мышкой на точке, которую нужно удалить, совместив ее с крестиком курсора.


    Отметим, что удаленные точки можно "возвратить", щелкнув по кнопке Отменить все в диалоговом окне Закрашивание.

    Нормальные вероятностные графики. Из окна Анализ остатков пользователь получает большому количеству дополнительных графиков. Большинство этих графиков более или менее просто интерпретируются. Тем не менее, здесь мы дадим интерпретацию нормального вероятностного графика, поскольку он наиболее часто используется при анализе справедливости предположений регрессии.

    Как было замечено ранее, множественная линейная регрессия предполагает линейную связь между переменными в уравнении, и нормальным распределением остатков. Если эти предположения нарушаются, окончательные заключения могут оказаться неточными. Нормальный вероятностный график остатков наглядно показывает наличие или отсутствие больших отклонений от высказанных предположений. Нажмите кнопку Нормальный во вкладке Вероятностные графики для построения этого графика.


    Этот график строится следующим образом. Сначала остатки регрессии ранжируются. Для этих упорядоченных остатков вычисляются z-значения (т.е. стандартные значения нормального распределения), исходя из предположения, что данные имеют нормальное распределение. Эти z-значения откладываются по оси Y на графике.

    Если наблюдаемые остатки (отложенные по оси X) нормально распределены, то все значения будут располагаться на графике вблизи прямой линии; на данном графике все точки лежат очень близко к прямой линии. Если остатки не распределены нормально, то они будут отклоняться от линии. На этом графике также могут стать заметны выбросы.

    Если имеющаяся модель плохо согласуется с данными, и данные на графике, похоже, образуют некоторую структуру (например, облако наблюдений принимает S-образную форму) около линии регрессии, то, возможно, будет полезным применение некоторого преобразования зависимой переменной (например, логарифмирование с целью "поджать" хвост распределения, и т.п.; см. также краткое обсуждение преобразований Бокса-Кокса и Бокса-Тидвелла в разделе Примечания и техническая информация). Обсуждение подобных методов лежит за рамками данного руководства (в книге Neter, Wasserman и Kutner, 1985, стр. 134, авторы предлагают превосходное обсуждение преобразований, как средств борьбы с ненормальностью и нелинейностью). Однако слишком часто исследователи просто принимают свои данные, не пытаясь присмотреться к их структуре или проверить их на соответствие своим предположениям, что приводит к ошибочным заключениям. По этой причине одной из основных задач, стоявшей перед разработчиками пользовательского интерфейса модуля Множественной регрессии было максимально возможное упрощение (графического) анализа остатков.

    Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
    Задачи регрессионного анализа :
    а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
    б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
    в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

    Парная регрессия - уравнение связи двух переменных у и х: , где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

    Различают линейные и нелинейные регрессии.
    Линейная регрессия: y = a + bx + ε
    Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
    Регрессии, нелинейные по объясняющим переменным:

    Регрессии, нелинейные по оцениваемым параметрам: Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.
    .
    Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

    Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

    Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :

    и индекс корреляции - для нелинейной регрессии:

    Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
    Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
    .
    Допустимый предел значений - не более 8-10%.
    Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
    .

    Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
    ,
    где - общая сумма квадратов отклонений;
    - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
    - остаточная сумма квадратов отклонений.
    Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

    Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

    F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
    ,
    где n - число единиц совокупности; m - число параметров при переменных х.
    F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
    Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
    Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
    ; ; .
    Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



    Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
    Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

    Если t табл < t факт то H o отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или .
    Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
    , .
    Формулы для расчета доверительных интервалов имеют следующий вид:
    ; ;
    ; ;
    Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
    Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :
    ,
    где
    и строится доверительный интервал прогноза:
    ; ;
    где .

    Пример решения

    Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
    Таблица 1.
    Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
    а) линейной;
    б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
    в) показательной;
    г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
    2. Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера.

    Решение (Вариант №1)

    Для расчета параметров a и b линейной регрессии (расчет можно проводить с помощью калькулятора).
    решаем систему нормальных уравнений относительно а и b:
    По исходным данным рассчитываем :
    y x yx x 2 y 2 A i
    l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
    2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
    3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
    4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
    5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
    6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
    7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
    Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
    Ср. знач. (Итого/n) 57,89 54,90 3166,05 3048,34 3383,68 X X 8,1
    s 5,74 5,86 X X X X X X
    s 2 32,92 34,34 X X X X X X


    Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
    Рассчитаем линейный коэффициент парной корреляции:

    Связь умеренная, обратная.
    Определим коэффициент детерминации:

    Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

    В среднем расчетные значения отклоняются от фактических на 8,1%.
    Рассчитаем F-критерий:

    поскольку 1< F < ¥ , следует рассмотреть F -1 .
    Полученное значение указывает на необходимость принять гипотезу Но о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
    1б. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:


    где Y=lg(y), X=lg(x), C=lg(a).

    Для расчетов используем данные табл. 1.3.

    Таблица 1.3

    Y X YX Y 2 X 2 A i
    1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
    2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
    3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
    4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
    5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
    6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
    7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
    Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
    Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
    σ 0,0425 0,0484 X X X X X X X
    σ 2 0,0018 0,0023 X X X X X X X

    Рассчитаем С иb:


    Получим линейное уравнение:.
    Выполнив его потенцирование, получим:

    Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции и среднюю ошибку аппроксимации

    Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

    . Построению уравнения показательной кривой

    предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

    Для расчетов используем данные таблицы.

    Y x Yx Y 2 x 2 A i
    1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
    2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
    3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
    4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
    5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
    6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
    7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
    Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
    Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
    σ 0,0425 5,86 X X X X X X X
    σ 2 0,0018 34,339 X X X X X X X

    Значения параметров регрессии A и В составили:


    Получено линейное уравнение: . Произведем потенцирование полученного уравнения и запишем его в обычной форме:

    Тесноту связи оценим через индекс корреляции :

    Предполагается, что - независимые переменные (предикторы, объясняющие переменные) влияют на значения - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным , требуется построить функцию , которая приближенно описывала бы изменение при изменении :

    .

    Предполагается, что множество допустимых функций, из которого подбирается , является параметрическим:

    ,

    где - неизвестный параметр (вообще говоря, многомерный). При построении будем считать, что

    , (1)

    где первое слагаемое - закономерное изменение от , а второе - - случайная составляющая с нулевым средним; является условным математическим ожиданием при условии известного и называется регрессией по .

    Пусть n раз измерены значения факторов и соответствующие значения переменной y ; предполагается, что

    (2)

    (второй индекс у x относится к номеру фактора, а первый – к номеру наблюдения); предполагается также, что

    (3)

    т.е. - некоррелированные случайные величины. Соотношения (2) удобно записывать в матричной форме:

    , (4)

    где - вектор-столбец значений зависимой переменной, t - символ транспонирования, - вектор-столбец (размерности k ) неизвестных коэффициентов регрессии, - вектор случайных отклонений,

    -матрица ; в i -й строке находятся значения независимых переменных в i -м наблюдении первая переменная – константа, равная 1.

    в начало

    Оценка коэффициентов регрессии

    Построим оценку для вектора так, чтобы вектор оценок зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора заданных значений:

    .

    Решением является (если ранг матрицы равен k+1 ) оценка

    (5)

    Нетрудно проверить, что она несмещенная.

    в начало

    Проверка адекватности построенной регрессионной модели

    Между значением , значением из регрессионной модели и значением тривиальной оценкой выборочного среднего существует следующее соотношение:

    ,

    где .

    По сути, член в левой части определяет общую ошибку относительно среднего. Первый член в правой части () определяет ошибку, связанную с регрессионной моделью, а второй () ошибку, связанную со случайными отклонениями и необъясненной построенной моделью.

    Поделив обе части на полную вариацию игреков , получим коэффициент детерминации:

    (6)

    Коэффициент показывает качество подгонки регрессионной модели к наблюдаемым значениям . Если , то регрессия на не улучшает качества предсказания по сравнению с тривиальным предсказанием .

    Другой крайний случай означает точную подгонку: все , т.е. все точки наблюдений лежат на регрессионной плоскости.

    Однако, значение возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный коэффициент детерминации

    (7)

    Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

    Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

    (8)

    где - диагональный элемент матрицы Z . Если ошибки распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

    (9)

    распределена по закону Стьюдента с степенями свободы, и поэтому неравенство

    , (10)

    где - квантиль уровня этого распределения, задает доверительный интервал для с уровнем доверия .

    Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициентов, при константе используется статистика

    , (11)

    распределенная, если верна, по закону Фишера с k и степенями свободы. отклоняется, если

    (12)

    где - квантиль уровня .

    в начало

    Описание данных и постановка задачи

    Исходный файл с данными tube_dataset.sta содержит 10 переменных и 33 наблюдения. См. рис. 1.


    Рис. 1. Исходная таблица данных из файла tube_dataset.sta

    В названии наблюдений указан временной интервал: квартал и год (до и после точки соответственно). Каждое наблюдение содержит данные за соответствующий временной интервал. 10 переменная «Квартал» дублирует номер квартала в имени наблюдения. Список переменных приведен ниже.


    Цель: Построить регрессионную модель для переменной №9 «Потребление труб».

    Этапы решения:

    1) Сначала проведем разведочный анализ имеющихся данных на предмет выбросов и незначимых данных (построение линейных графиков и диаграмм рассеяния).

    2) Проверим наличие возможных зависимостей между наблюдениями и между переменными (построение корреляционных матриц).

    3) Если наблюдения будут образовывать группы, то для каждой группы построим регрессионную модель для переменной «Потребление труб» (множественная регрессия).

    Перенумеруем переменные по порядку в таблице. Зависимой переменной (отклик) будем называть переменную «Потребление труб». Независимыми (предикторами) назовем все остальные переменные.

    в начало

    Решение задачи по шагам

    Шаг 1. Диаграммы рассеяния (см. рис. 2.) явных выбросов не выявили. В то же время, на многих графиках явно просматривается линейная зависимость. Также есть пропущенные данные по «Потреблению труб» в 4 кварталах 2000 года.


    Рис. 2. Диаграмма рассеяния зависимой переменной (№9) и кол-ва скважин (№8)

    Цифра после символа Е в отметках по оси Х обозначает степень числа 10, которое определяет порядок значений переменной №8 (Количество скважин действующих). В данном случае речь идет о значении порядка 100.000 скважин (10 в 5 степени).

    На диаграмме рассеяния на рис. 3 (см. ниже) отчетливо видно 2 облака точек, причем каждое из них имеет явную линейную зависимость.

    Понятно, что переменная №1, скорее всего, войдет в регрессионную модель, т.к. нашей задачей является выявление именно линейной зависимости между предикторами и откликом.


    Рис. 3. Диаграмма рассеяния зависимой переменной (№9) и Инвестиций в нефтяную промышленность (№1)

    Шаг 2. Построим линейные графики всех переменных в зависимости от времени. Из графиков видно, что данные по многим переменным сильно разнятся в зависимости от номера квартала, но рост из года в год сохраняется.

    Полученный результат подтверждает предположения, полученные на основе рис. 3.


    Рис. 4. Линейный график 1-й переменной в зависимости от времени

    В частности, на рис. 4 построен линейный график для первой переменной.

    Шаг 3. Согласно результатам рис. 3 и рис. 4, разобьем наблюдения на 2 группы, по переменной №10 «Квартал». В первую группу войдут данные по 1 и 4 кварталу, а во вторую – данные по 2 и 3.

    Чтобы разбить наблюдения согласно кварталам на 2 таблицы, воспользуемся пунктом Данные/Подмножество/Случайный выбор . Здесь в качестве наблюдений нам надо указать условия на значения переменной КВАРТАЛ. Cм. рис. 5.

    Согласно заданным условиям наблюдения будут скопированы в новую таблицу. В строчке снизу можно указать конкретные номера наблюдений, однако в нашем случае это займет много времени.

    Рис. 5. Выбор подмножества наблюдений из таблицы

    В качестве заданного условия зададим:

    V10 = 1 OR V10 = 4

    V10 – это 10 переменная в таблице (V0 – это столбец с наблюдениями). По сути, мы проверяем каждое наблюдение в таблице, относится оно к 1-ому или 4-ому кварталу или нет. Если мы хотим, выбрать другое подмножество наблюдений, то можно либо сменить условие на:

    V10 = 2 OR V10 = 3

    либо перенести первое условие в исключающие правила.

    Нажав ОК , мы сначала получим таблицу с данными только по 1 и 4 кварталу, а затем и таблицу с данными по 2 и 3 кварталу. Сохраним их под именами 1_4.sta и 2_3.sta через вкладку Файл/Сохранить как.

    Далее будем работать уже с двумя таблицами и полученные результаты регрессионного анализа для обеих таблиц можно будет сравнить.

    Шаг 4. Построим матрицу корреляций для каждой из групп, чтобы проверить предположение относительно линейной зависимости и учесть возможные сильные корреляции между переменными при построении регрессионной модели. Так как есть пропущенные данные, корреляционная матрица была построена с опцией попарного удаления пропущенных данных. См. рис. 6.


    Рис. 6. Матрица корреляций для первых 9-ти переменных по данным 1 и 4 кварталов

    Из корреляционной матрицы в частности понятно, некоторые переменные очень сильно коррелируют друг с другом.

    Стоит отметить, что достоверность больших значений корреляции возможна только при отсутствии выбросов в исходной таблице. Поэтому диаграммы рассеяния для зависимой переменной и всех остальных переменных обязательно должны учитываться при корреляционном анализе.

    Например, переменная №1 и №2 (Инвестиции в нефтяную и газовую промышленность соответственно). См. рис.7 (или, например, рис. 8).


    Рис. 7. Диаграмма рассеяния для переменной №1 и №2

    Рис. 8. Диаграмма рассеяния для переменной №1 и №7

    Данная зависимость легко объяснима. Также ясен и высокий коэффициент корреляции между объемами добычи нефти и газа.

    Высокий коэффициент корреляции между переменными (мультиколлиниарность) нужно учитывать при построении регрессионной модели. Здесь могут возникнуть большие ошибки при вычислении коэффициентов регрессии (плохообусловленная матрица при вычислении оценки через МНК).

    Приведем наиболее распространенные способы устранения мультиколлиниарности :

    1) Гребневая регрессия.

    Данная опция задается при построении множественной регрессии. Число - малое положительное число. Оценка МНК в таком случае равна:

    ,

    где Y – вектор со значениями зависимой переменной, X – матрица, содержащая по столбцам значения предикторов, а – единичная матрица порядка n+1. (n – количество предикторов в модели).

    Плохообусловленность матрицы при гребневой регрессии значительно уменьшается.

    2) Исключение одной из объясняющих переменных.

    В этом случае из анализа исключается одна объясняющая переменная имеющая высокий парный коэффициент корреляции (r>0.8) с другим предиктором.

    3) Использование пошаговых процедур с включением/исключением предикторов .

    Обычно, в таких случаях, используют либо гребневую регрессию (она задается в качестве опции при построении множественной), либо, на основе значений корреляции, исключают объясняющие переменные, имеющие высокий парный коэффициент корреляции (r > 0.8), либо пошаговую регрессию с включением/исключением переменных.

    Шаг 5. Теперь построим регрессионную модель при помощи выпадающей вкладки меню (Анализ/Множественная регрессия ). В качестве зависимой переменной укажем «Потребление труб», в качестве независимых – все остальные. См. рис. 9.


    Рис. 9. Построение множественной регрессии для таблицы 1_4.sta

    Множественную регрессию можно проводить пошагово. В этом случае в модель будут пошагово включаться (или исключаться) переменные, которые вносят наибольший (наименьший) вклад в регрессию на данном шаге.

    Также данная опция позволяет остановиться на шаге, когда коэффициент детерминации еще не наибольший, однако уже все переменные модели являются значимыми. См. рис. 10.


    Рис. 10. Построение множественной регрессии для таблицы 1_4.sta

    Особо стоит отметить, что пошаговая регрессия с включением, в случае, когда количество переменных больше количества наблюдений, является единственным способом построения регрессионной модели.

    Установка нулевого значения свободного члена регрессионной модели используется в случае, если сама идея модели подразумевает нулевое значение отклика, когда все предикторы окажутся равными 0. Чаще всего подобные ситуации встречаются в экономических задачах.

    В нашем случае свободный член мы включим в модель.


    Рис. 11. Построение множественной регрессии для таблицы 1_4.sta

    В качестве параметров модели выберем Пошаговую с исключением (Fвкл = 11, Fвыкл = 10), с гребневой регрессией (лямбда = 0.1). И для каждой группы построим регрессионную модель. См. рис.11.

    Результаты в виде Итоговой таблицы регрессии (см. также рис. 14) представлены на рис.12 и рис.13. Они получены на последнем шаге регрессии.

    Шаг 6. Проверка адекватности модели

    Обратим внимание, что, несмотря на значимость всех переменных в регрессионной модели (p-уровень < 0.05 – подсвечены красным цветом), коэффициент детерминации R2 существенно меньше у первой группы наблюдений.

    Коэффициент детерминации показывает, по сути, какая доля дисперсии отклика объясняется влиянием предикторов в построенной модели. Чем ближе R2 к 1, тем лучше модель.

    F-статистика Фишера используется для проверки гипотезы о нулевых значениях коэффициентов регрессии (т.е. об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , кроме коэффициента ). Гипотеза отклоняется при малом уровне значимости.

    В нашем случае (см. рис. 12) значение F-статистики = 13,249 при уровне значимости p < 0,00092, т.е. гипотеза об отсутствии линейной связи отклоняется.


    Рис. 12. Результаты регрессионного анализа данных по 1 и 4 кварталу


    Рис. 13. Результаты регрессионного анализа данных по 2 и 3 кварталу

    Шаг 7. Теперь проведем анализ остатков полученной модели. Результаты, полученные при анализе остатков, являются важным дополнением к значению коэффициента детерминации при проверке адекватности построенной модели.

    Для простоты будем рассматривать лишь группу, разбитую на кварталы с номерами 2 и 3, т.к. вторая группа исследуется аналогично.

    В окне, представленном на рис. 14, на вкладке Остатки/предсказанные/наблюдаемые значения нажмем на кнопку Анализ остатков , и далее нажмем на кнопку Остатки и предсказанные . (См. рис. 15)

    Кнопка Анализ остатков будет активна, только если регрессия получена на последнем шаге. Чаще оказывается важным получить регрессионную модель, в которой значимы все предикторы, чем продолжить построение модели (увеличивая коэффициент детерминации) и получить незначимые предикторы.

    В этом случае, когда регрессия не останавливается на последнем шаге, можно искусственно задать количество шагов в регрессии.


    Рис. 14. Окно с результатами множественной регрессии для данных по 2 и 3-му кварталам


    Рис. 15. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 квартала

    Прокомментируем результаты, представленные на рис. 15. Важным является столбец с Остатками (разница первых 2-х столбцов). Большие остатки по многим наблюдениям и наличие наблюдения с маленьким остатком может указывать на последнее как на выброс.

    Другими словами анализ остатков нужен для того, чтобы отклонения от предположений, угрожающие обоснованности результатов анализа, могли быть легко обнаружены.


    Рис. 16. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 кварталов + 2 границы 0.95 доверительного интервала

    В конце приведем график, иллюстрирующий данные, полученные из таблицы на рис. 16. Здесь добавлены 2 переменные: UCB и LCB – 0.95 верх. и нижн. дов. интервал.

    UBC = V2+1.96*V6

    LBC = V2-1.96*V6

    И удалены четыре последних наблюдения.

    Построим линейный график с переменными (Графики/2М Графики/Линейные графики для переменных )

    1) Наблюдаемое значение (V1)

    2) Предсказанное значение (V2)

    3) UCB (V9)

    4) LCB (V10)

    Результат представлен на рис. 17. Теперь видно, что построенная регрессионная модель довольно неплохо отражает реальное потребление труб, особенно на результатах недавнего прошлого.

    Это означает, что в ближайшем будущем реальные значения могут быть приближены модельными.

    Отметим один важный момент. В прогнозировании при помощи регрессионных моделей всегда важен базовый временной интервал. В рассматриваемой задаче были выбраны кварталы.

    Соответственно, при построении прогноза предсказываемые значения будут также получаться по кварталам. Если нужно получить прогноз на год, то придется прогнозировать на 4 квартала и в конце накопится большая ошибка.

    Подобную проблему можно решить аналогично, вначале лишь агрегируя данные от кварталов к годам (например, усреднением). Для данной задачи подход не очень корректен, так как останется всего лишь 8 наблюдений, по которым будет строиться регрессионная модель. См. рис.18.


    Рис. 17. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по 2 и 3 кварталам)


    Рис. 18. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по годам)

    Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням.

    Следует помнить, что все методы регрессионного анализа позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные связи. Поэтому ответ на вопрос о значимости переменных в полученной модели остается за экспертом в данной области, который, в частности, способен учесть влияние факторов, возможно, не вошедших в данную таблицу.

    В статистическом моделировании регрессионный анализ представляет собой исследования, применяемые с целью оценки взаимосвязи между переменными. Этот математический метод включает в себя множество других методов для моделирования и анализа нескольких переменных, когда основное внимание уделяется взаимосвязи между зависимой переменной и одной или несколькими независимыми. Говоря более конкретно, регрессионный анализ помогает понять, как меняется типичное значение зависимой переменной, если одна из независимых переменных изменяется, в то время как другие независимые переменные остаются фиксированными.

    Во всех случаях целевая оценка является функцией независимых переменных и называется функцией регрессии. В регрессионном анализе также представляет интерес характеристика изменения зависимой переменной как функции регрессии, которая может быть описана с помощью распределения вероятностей.

    Задачи регрессионного анализа

    Данный статистический метод исследования широко используется для прогнозирования, где его использование имеет существенное преимущество, но иногда это может приводить к иллюзии или ложным отношениям, поэтому рекомендуется аккуратно его использовать в указанном вопросе, поскольку, например, корреляция не означает причинно-следственной связи.

    Разработано большое число методов для проведения регрессионного анализа, такие как линейная и обычная регрессии по методу наименьших квадратов, которые являются параметрическими. Их суть в том, что функция регрессии определяется в терминах конечного числа неизвестных параметров, которые оцениваются из данных. Непараметрическая регрессия позволяет ее функции лежать в определенном наборе функций, которые могут быть бесконечномерными.

    Как статистический метод исследования, регрессионный анализ на практике зависит от формы процесса генерации данных и от того, как он относится к регрессионному подходу. Так как истинная форма процесса данных, генерирующих, как правило, неизвестное число, регрессионный анализ данных часто зависит в некоторой степени от предположений об этом процессе. Эти предположения иногда проверяемы, если имеется достаточное количество доступных данных. Регрессионные модели часто бывают полезны даже тогда, когда предположения умеренно нарушены, хотя они не могут работать с максимальной эффективностью.

    В более узком смысле регрессия может относиться конкретно к оценке непрерывных переменных отклика, в отличие от дискретных переменных отклика, используемых в классификации. Случай непрерывной выходной переменной также называют метрической регрессией, чтобы отличить его от связанных с этим проблем.

    История

    Самая ранняя форма регрессии - это всем известный метод наименьших квадратов. Он был опубликован Лежандром в 1805 году и Гауссом в 1809. Лежандр и Гаусс применили метод к задаче определения из астрономических наблюдений орбиты тел вокруг Солнца (в основном кометы, но позже и вновь открытые малые планеты). Гаусс опубликовал дальнейшее развитие теории наименьших квадратов в 1821 году, включая вариант теоремы Гаусса-Маркова.

    Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать биологическое явление. Суть была в том, что рост потомков от роста предков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона регрессия имела только этот биологический смысл, но позже его работа была продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему статистическому контексту. В работе Йоля и Пирсона совместное распределение переменных отклика и пояснительных считается гауссовым. Это предположение было отвергнуто Фишером в работах 1922 и 1925 годов. Фишер предположил, что условное распределение переменной отклика является гауссовым, но совместное распределение не должны быть таковым. В связи с этим предположение Фишера ближе к формулировке Гаусса 1821 года. До 1970 года иногда уходило до 24 часов, чтобы получить результат регрессионного анализа.

    Методы регрессионного анализа продолжают оставаться областью активных исследований. В последние десятилетия новые методы были разработаны для надежной регрессии; регрессии с участием коррелирующих откликов; методы регрессии, вмещающие различные типы недостающих данных; непараметрической регрессии; байесовские методов регрессии; регрессии, в которых переменные прогнозирующих измеряются с ошибкой; регрессии с большей частью предикторов, чем наблюдений, а также причинно-следственных умозаключений с регрессией.

    Регрессионные модели

    Модели регрессионного анализа включают следующие переменные:

    • Неизвестные параметры, обозначенные как бета, которые могут представлять собой скаляр или вектор.
    • Независимые переменные, X.
    • Зависимые переменные, Y.

    В различных областях науки, где осуществляется применение регрессионного анализа, используются различные термины вместо зависимых и независимых переменных, но во всех случаях регрессионная модель относит Y к функции X и β.

    Приближение обычно оформляется в виде E (Y | X) = F (X, β). Для проведения регрессионного анализа должен быть определен вид функции f. Реже она основана на знаниях о взаимосвязи между Y и X, которые не полагаются на данные. Если такое знание недоступно, то выбрана гибкая или удобная форма F.

    Зависимая переменная Y

    Предположим теперь, что вектор неизвестных параметров β имеет длину k. Для выполнения регрессионного анализа пользователь должен предоставить информацию о зависимой переменной Y:

    • Если наблюдаются точки N данных вида (Y, X), где N < k, большинство классических подходов к регрессионному анализу не могут быть выполнены, так как система уравнений, определяющих модель регрессии в качестве недоопределенной, не имеет достаточного количества данных, чтобы восстановить β.
    • Если наблюдаются ровно N = K, а функция F является линейной, то уравнение Y = F (X, β) можно решить точно, а не приблизительно. Это сводится к решению набора N-уравнений с N-неизвестными (элементы β), который имеет единственное решение до тех пор, пока X линейно независим. Если F является нелинейным, решение может не существовать, или может существовать много решений.
    • Наиболее распространенной является ситуация, где наблюдается N > точки к данным. В этом случае имеется достаточно информации в данных, чтобы оценить уникальное значение для β, которое наилучшим образом соответствует данным, и модель регрессии, когда применение к данным можно рассматривать как переопределенную систему в β.

    В последнем случае регрессионный анализ предоставляет инструменты для:

    • Поиска решения для неизвестных параметров β, которые будут, например, минимизировать расстояние между измеренным и предсказанным значением Y.
    • При определенных статистических предположениях, регрессионный анализ использует избыток информации для предоставления статистической информации о неизвестных параметрах β и предсказанные значения зависимой переменной Y.

    Необходимое количество независимых измерений

    Рассмотрим модель регрессии, которая имеет три неизвестных параметра: β 0 , β 1 и β 2 . Предположим, что экспериментатор выполняет 10 измерений в одном и том же значении независимой переменной вектора X. В этом случае регрессионный анализ не дает уникальный набор значений. Лучшее, что можно сделать, оценить среднее значение и стандартное отклонение зависимой переменной Y. Аналогичным образом измеряя два различных значениях X, можно получить достаточно данных для регрессии с двумя неизвестными, но не для трех и более неизвестных.

    Если измерения экспериментатора проводились при трех различных значениях независимой переменной вектора X, то регрессионный анализ обеспечит уникальный набор оценок для трех неизвестных параметров в β.

    В случае общей линейной регрессии приведенное выше утверждение эквивалентно требованию, что матрица X Т X обратима.

    Статистические допущения

    Когда число измерений N больше, чем число неизвестных параметров k и погрешности измерений ε i , то, как правило, распространяется затем избыток информации, содержащейся в измерениях, и используется для статистических прогнозов относительно неизвестных параметров. Этот избыток информации называется степенью свободы регрессии.

    Основополагающие допущения

    Классические предположения для регрессионного анализа включают в себя:

    • Выборка является представителем прогнозирования логического вывода.
    • Ошибка является случайной величиной со средним значением нуля, который является условным на объясняющих переменных.
    • Независимые переменные измеряются без ошибок.
    • В качестве независимых переменных (предикторов) они линейно независимы, то есть не представляется возможным выразить любой предсказатель в виде линейной комбинации остальных.
    • Ошибки являются некоррелированными, то есть ковариационная матрица ошибок диагоналей и каждый ненулевой элемент являются дисперсией ошибки.
    • Дисперсия ошибки постоянна по наблюдениям (гомоскедастичности). Если нет, то можно использовать метод взвешенных наименьших квадратов или другие методы.

    Эти достаточные условия для оценки наименьших квадратов обладают требуемыми свойствами, в частности эти предположения означают, что оценки параметров будут объективными, последовательными и эффективными, в особенности при их учете в классе линейных оценок. Важно отметить, что фактические данные редко удовлетворяют условиям. То есть метод используется, даже если предположения не верны. Вариация из предположений иногда может быть использована в качестве меры, показывающей, насколько эта модель является полезной. Многие из этих допущений могут быть смягчены в более продвинутых методах. Отчеты статистического анализа, как правило, включают в себя анализ тестов по данным выборки и методологии для полезности модели.

    Кроме того, переменные в некоторых случаях ссылаются на значения, измеренные в точечных местах. Там могут быть пространственные тенденции и пространственные автокорреляции в переменных, нарушающие статистические предположения. Географическая взвешенная регрессия - единственный метод, который имеет дело с такими данными.

    В линейной регрессии особенностью является то, что зависимая переменная, которой является Y i , представляет собой линейную комбинацию параметров. Например, в простой линейной регрессии для моделирования n-точек используется одна независимая переменная, x i , и два параметра, β 0 и β 1 .

    При множественной линейной регрессии существует несколько независимых переменных или их функций.

    При случайной выборке из популяции ее параметры позволяют получить образец модели линейной регрессии.

    В данном аспекте популярнейшим является метод наименьших квадратов. С помощью него получают оценки параметров, которые минимизируют сумму квадратов остатков. Такого рода минимизация (что характерно именно линейной регрессии) этой функции приводит к набору нормальных уравнений и набору линейных уравнений с параметрами, которые решаются с получением оценок параметров.

    При дальнейшем предположении, что ошибка популяции обычно распространяется, исследователь может использовать эти оценки стандартных ошибок для создания доверительных интервалов и проведения проверки гипотез о ее параметрах.

    Нелинейный регрессионный анализ

    Пример, когда функция не является линейной относительно параметров, указывает на то, что сумма квадратов должна быть сведена к минимуму с помощью итерационной процедуры. Это вносит много осложнений, которые определяют различия между линейными и нелинейными методами наименьших квадратов. Следовательно, и результаты регрессионного анализа при использовании нелинейного метода порой непредсказуемы.

    Расчет мощности и объема выборки

    Здесь, как правило, нет согласованных методов, касающихся числа наблюдений по сравнению с числом независимых переменных в модели. Первое правило было предложено Доброй и Хардином и выглядит как N = t^n, где N является размер выборки, n - число независимых переменных, а t есть числом наблюдений, необходимых для достижения желаемой точности, если модель имела только одну независимую переменную. Например, исследователь строит модель линейной регрессии с использованием набора данных, который содержит 1000 пациентов (N). Если исследователь решает, что необходимо пять наблюдений, чтобы точно определить прямую (м), то максимальное число независимых переменных, которые модель может поддерживать, равно 4.

    Другие методы

    Несмотря на то что параметры регрессионной модели, как правило, оцениваются с использованием метода наименьших квадратов, существуют и другие методы, которые используются гораздо реже. К примеру, это следующие методы:

    • Байесовские методы (например, байесовский метод линейной регрессии).
    • Процентная регрессия, использующаяся для ситуаций, когда снижение процентных ошибок считается более целесообразным.
    • Наименьшие абсолютные отклонения, что является более устойчивым в присутствии выбросов, приводящих к квантильной регрессии.
    • Непараметрическая регрессия, требующая большого количества наблюдений и вычислений.
    • Расстояние метрики обучения, которая изучается в поисках значимого расстояния метрики в заданном входном пространстве.

    Программное обеспечение

    Все основные статистические пакеты программного обеспечения выполняются с помощью наименьших квадратов регрессионного анализа. Простая линейная регрессия и множественный регрессионный анализ могут быть использованы в некоторых приложениях электронных таблиц, а также на некоторых калькуляторах. Хотя многие статистические пакеты программного обеспечения могут выполнять различные типы непараметрической и надежной регрессии, эти методы менее стандартизированы; различные программные пакеты реализуют различные методы. Специализированное регрессионное программное обеспечение было разработано для использования в таких областях как анализ обследования и нейровизуализации.