Топология локальных сетей. Стандарты технологии FDDI

Лекция

Тема: Стандарты технологии Ethernet, TokenRing и FDDI.

Цель .

  1. Обучающая. Ввести основные понятия. Освоить методы разработки и способы представления элементов сети.
  2. Развивающая. Р азвивать логику, умение анализировать, сравнивать, делать выводы, высказывать свою мысль. Развивать внимание и аналитическое мышление.
  3. Воспитательная . Воспитывать интерес к языкам программирования, научным достижениям и открытиям. Воспитывать аккуратность, внимательность и дисциплинированность. Формирование самостоятельности и ответственности при повторении пройденного и изучении нового материала. Воспитывать чувство ответственности за напарника при работе в группе.

Межпредметные связи:

· Обеспечивающие: информатика.

· Обеспечиваемые: базы данных.

Методическое обеспечение и оборудование:

1. Методическая разработка к занятию.

2. Рабочая программа.

3. Инструктаж по технике безопасности.

Технические средства обучения: проэктор, компьютер.

Обеспечение рабочих мест:

  • Рабочие тетради.

Ход лекции.

  1. Организационный этап.
  2. Анализ и проверка домашнего задания.
  3. Фронтальный опрос по вопросам.

Решите задачи.

Стандарты технологии Ethernet

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время Ethernet, оценивается в 5 миллионов, а количество компьютеров, работающих с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля.

Рис. Примитивы уровня LLC
а, в, с - без установления соединения, d - с установлением соединения

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время, как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-F.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код.

Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

Стандарты технологии Token Ring

Сети Token Ring характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется детерминированный алгоритм, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию – отправитель

Стандарты технологии FDDI

FDDI (Fiber Distributed Data Interface) - это стандарт или набор сетевых стандартов, ориентированных на передачу данных по волоконно-оптическом кабелю со скоростью 100 Мбит/с. Подавляющая часть спецификаций стандарта FDDI использует в качестве среды передачи оптическое волокно.

В настоящее время большинство сетевых технологий поддерживают волоконно-оптический интерфейс в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, а оборудование различных производителей показывает хорошую степень совместимости.

При разработке технологии FDDI ставились в качестве наиболее приоритетных следующие цели:

Повышение битовой скорости передачи данных до 100 Мбит/с;

Повышение отказоустойчивости сети за счет стандартных процедур восстановления после отказов различного рода - повреждения кабеля, некорректной работы сетевого узла, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективное использование потенциальной пропускной способности с как для асинхронного, так и для синхронного графиков.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи.

Два основных отличия в протоколах управления маркером в FDDI и IEEE 802.5 Token Ring следующие:

В Token Ring станция, передающая кадры, удерживает маркер до тех пор, пока не получит все отправленные пакеты. В FDDI же станция выпускает маркер непосредственно окончанием передачи кадра (кадров);

FDDI не использует приоритет и поля резервирования, которые Token Ring использует для выделения системных ресурсов.

В таблице указаны основные характеристики сети FDDI.

* Некоторые производители выпускают оборудование на расстояние передачи до 50 км.
** При указанной длине сеть будет продолжать корректно работать и сохранять целостность при появлении единичного разрыва кольца или при отключении одной из станций кольца (режим WRAP) - при этом длина пути обхода маркера не будет превышать 200 км.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25

Достоинства и недостатки FDDI. Топологии FDDI. Принцип работы FDDI. Передача маркера в FDDI.

Технология FDDI (Fiber Distributed Data Interface - оптоволоконный интерфейс распределенных данных) - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 80-с годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSI разработала в период с 1986 по 1988 год начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км.

Достоинства.

1.Надежность.

Двойная кольцевая конфигурация обеспечивает избыточность.

Система способна справляться с единичными и множественными обрывами, сегментируя участки.

2.Отказоустойчивость.

Двойное подключение (Dual Homing): учитывает избыточное соединение с FDDI сетью в топологии дерева. DAS станция может иметь двойное подключение, для этого А и B порты подключают к различным концентраторам. Если возникают сбои главного порта, активизируется резервная связь.

Оптический обход: эта возможность гарантирует, прохождение светового сигнала при сбоях в питании DAS станции. Данные просто обходят неактивную станцию, проходя через оптический обход.

Глобальное хранение: если оба логических кольца рабочие и в системе обнаружевается неисправность в одном из логических колец, то текущие данные без потери направляются по резервному кольцу.

3.Встроенное управление.

Каждый узел имеет объект управления, предоставляя большое число служб.

Благодаря наличию обширной MIB имеется возможность SNMP управления.

Недостатки .

Высокая цена обусловлена дорогими трансиверами, преобразующими электрический сигнал в оптический и наоборот. Оптоволоконная технология: ~ 700 $ / порт

UTP: ~ 450 $ / порт

Топология.

· Физическая топология

· Двойное кольцо без деревьев

· Двойное кольцо с деревьями

· Логическая топология.

· Разделяемое кольцо

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Приоритетные цели разработчиков:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабели, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.

Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru, то есть «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание», или «сворачивание», колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении а по вторичному - в обратном. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

FDDI — (Fiber Distributed Data Interface) — стандартизированная спецификация для сетевой архитектуры высокоскоростной транспортировки информации по оптоволоконным линиям. Скорость транспортировки — 100 Мбит/с. Логическая топология — кольцо (двойное), метод доступа — детерминированный, с транспортировкой маркера. Маркер доступа транспортируется от станции к станции по кольцу. Станция которая имеет маркер, имеет право передачи информации. Технология разрешает транспортировку асинхронного и синхронного трафика. При транспортировке синхронного трафика на этапе инициалиазации кольца определяется полоса пропускания, которая дается каждой станции для транспортировки. Для асинхронного трафика может выделяться вся остальная полоса пропускания кольца. Реальная пропускная способность кольца может быть — 95 Мбит/с, но при значительных задержках в обслуживании. При минимизации задержке пропускная способность может падать и до 20 Мбит/с.

Максимальное количество станций в сети — 500 с двойным кольцом и 1000 с одинарным. Длина между станциями станциями до 2 км при многомодовом и до 45-60 км при одномодовом кабеле., длина одинарного кольца — 200 км, двойного кольца — 100 км. Технологию FDDI можно анализировать как улучшение , которое проявляется в повышении отказоустойчивости, производительности и увеличение размеров сети относительно количества узлов и расстоянию между ними. Отказоустойчивость повышается за счет второго кольца, который замыкается в случае обрыва первого кольца. Технология FDDI легко интегрируется с Token Ring и Ethernet, что дает широкое применение в высокоскоростных магистралей.

Стандарт FDDI определяет 4 компонента: SMT, MAC, PHY, PMD (рис.1).

  • SMT (Station Management) — указывает настройку колец и станции, алгоритмы включения станции в кольцо и ее отключения и др. Реализует генерацию диагностических кадров, управляет доступом к сети и реализует целостность кольца, перенаправляет трафик данных на вторичное кольцо при неполадках в первом. Также можно использовать вторичное кольцо для повышение пропускной способности до 200 Мбит/с.
  • MAC (Media Access Control) — указывает форматы кадров, адресацию, алгоритм вычисления CRC, обработка ошибок. Соответствует MAC — подуровню канального уровня OSI. Меняется информацией с вышестоящим LLC — подуровнем.
  • PHY — (Physical) — указывает кодирование и декодирование, синхронизацию, кадрирование трафика. Относится к физическому уровню модели OSI.
  • PMD (Physical Medium Dependent) — определяет параметры оптических или электрических элементов (кабелей, трансиверов, коннекторов) характеристик каналов связи. Относится к физическому уровню модели OSI.

Рисунок — 1

Электрическую реализацию архитектуры FDDI на витой паре называют CDDI или TPDDI. SDDI определяет реализацию экранированного кабеля STP Type 1. В сравнении с оптическим вариантом эти технологии дешевле. но разрешаемая длина каналов связи между узлами уменьшается до 100 м. В сравнении с оптической, электрические версии менее стандартизованы и совместимость оборудование разных производителей не гарантируется.

Технологии физического уровня

Порты аппаратуры FDDI имеют приемопередатчики, которые реализуют раздельные линии для принимаемого (Rx) и передаваемого (Tx) сигналов. тут применяется логическое 4B/5B, где каждая четверка бит исходных данных кодируется 5-битным символом. Эффективную скорость транспортировки 100 Мбит/с реализует тактовая частота битовых интервалов 125 МГц.

В качестве среды передачи реализуется витая пара или оптоволокно:

  • SMF-PMD — одномодовое волокно с лазерными источниками. Разрешимая длина канала — 40 -60 км.
  • MMF-PMD — реализует в качестве среды передачи многомодовое волокно, источник излучения — светодиод. Разрешимая длина канала — 2 км.
  • LCF-PMD — дешевое многомодовое волокно, где длина канала связи ограничена 500 м.
  • TP PMD — витая пара STP type 1 или UTP категории 5, коннекторы Rj — 45. Реализовано две пары проводов, длина — 100 м.

Для всех оптических вариантов длина волны — 1300 нм, из-за чего порты MMF, LCF, SMF можно объединять, если соединение вносит допустимое затухание. Физическая топология сети FDDI — гибридная или кольцевая, частичное включение звездообразных или древовидных подсетей в главную сеть через концентратор. На рис.2 видно пример, на котором реализованы следующие типы подключения:

  • SAS — станция одинарного подключения (только к первичному кольцу)
  • DAS — станция двойного подключения (к обоим кольцам)
  • SAC — концентратор одинарного подключения, реализует соединения узлов одинарного подключения
  • DAC — конценторатор двойного подключения, реализует подключение к двойному кольцу узлы одинарного подключения

Рисунок — 2

Станции двойного (DAS) и одинарного (SAS) подключения имеют разные способы подключение к кольцу (рис.3). Станции подключения DAS (класс А), имеют два трансивера и могут встраиваться напрямую в базовую сеть, к кольцам. В нормальном режиме сигнал, поступающий на вход Pri_In, транслируется на выход Pri_Out, и при транспортировке в эту цепочку вклинивается кадр, транспортируемый текущей станцией. Связь Sec_In — Sec_Out реализована в качестве резервной. Станции одинарного соединения SAS, они же станции класса B, имеют один трансивер и встраиваются в первичное кольцо. Связь In-Out для них есть одной. В базовую сеть могут подключаться через концентратор или обходной коммутатор.

Рисунок — 3, а — одинарного подключения (SAS), б — двойного (DAS)

Концентраторы также могут быть одинарного (SAC) или двойного (DAC) подключения (рис.4). В их задачи входит реализация целостности логического кольца независимо от параметров линии и узлов, подключенных к его портам. DAC реализует включение станций SAS и концентраторов SAC в двойное логическое кольцо, SAC — включает в одинарное. При 100% древовидной или звездообразной топологии, без явного кольца, у корневого концентратора реализуется нулевое подключение — (null-attachment concentrator).

Рисунок — 4, а — одинарного подключения (SAC), б — двойного (DAC)

Повторитель — реализует промежуточное усиление оптического сигнала, в некоторых случаях может быть реализован переход с одномодового на многомодовое волокно. Аттенюатор — реализуют снижение мощности на входе приемника до номинального уровня.

Обходной коммутатор — двойной или одиночный, реализует обход узла в случае его отказа или отключения. Такой аппарат ставится между кольцом и станцией и реализует один из двух вариантов возможных схем коммутации световых потоков (рис.5). Коммутатор подключает станцию в кольцо при наличии разрешающего сигнала готовности. Реализуя обходные коммутаторы, нужно учитывать:

  • реализация такого коммутатора возможна лишь при соединение станций с однотипными соседями (только ММ или SM) волокнами. В ином случае соединение одномодового с многомодовым волокно неработоспособно.
  • Суммарная длина кабелей, приходящих к коммутатору от соседних станций, не должна быть выше предела для данного типа кабелей и портов с параметром затухания, который вносит коммутатор (~ 2,5 дБ).
  • Количество обходных коммутаторов ограничено, из-за затухания и длины кабеля.

Рисунок — 5, а — станция включена, б — выключена

Разветвители — устройства, которые реализуют объединение/разветвление оптических сигналов.

Интерфейсы и порты FDDI

Стандарт описывает 4 типа портов:

  • порт А — прием с первичного кольца, транспортировка во вторичное (для устройств двойного подключения)
  • порт В — прием со вторичного кольца, транспортировка в первичное (-//-)
  • порт M (master) — прием и передача с одного кольца. Подключается на концентраторах для подключения SAC или SAS.
  • порт S (slave) — прием и передача с одного кольца. Подключается на концентраторах и станциях одинарного подключения.

Для типичного кольца есть правила соединения портов:

  • порт А подключается только с портов В и наоборот
  • порт М подключается только с портом S

В таблице 1 показаны варианты соединения портов. V — помечены допустимые соединение, U — нежелательные, которые могут привести к неожиданным топологиям. X — абсолютно недопустимые. P — соединение портов А и В с портами М, активное соединение только порта В (пока он жив).

Порт 1 Порт 2
A B S M
A V,U V V,U V,P
B V V,U V,U V,P
S V,U V,U V,U V
M V,P V,P V X

Для технологии FDDI, разработаны специальные оптические дуплескные коннекторы, учитывая многовариантность соединение передатчиков и приемников, FDDI MIC (Media Interface Connector). Вилки на кабелях имеют прорези, а розетки имеют выступы, такая система разрешает исключить ошибки коммутации портов (рис.6).

Рисунок — 6, a — для двойного подключения, б — для одинарного

Форматы кадров

В кольце FDDI могут передаваться пакеты двух видов: маркер (token) и каждой данные/команды (MAC Data/frame frame) (рис.7). Длина элементов указана в 5-битных символах (из-за 4B/5B). Длина кадра не может быть больше 9000 символов.

Рисунок — 7

Кадры и маркеры состоят из:

  • Pre — Преамбула, специальный набор символов, с помощью которых станция синхронизируется и подготавливается к обработке кадра
  • SD — начальный разделитель, комбинация JK
  • ED — конечный разделитель, один или два символа T
  • FC — байт управление пакетом.
  • DA — 2 или 6 байтный адрес назначения — уникальный, групповой или широковещательный
  • SA — адрес источника кадра, аналогичный DA
  • Info — поле данных длиной до 4478 байт. Имеет информацию вышестоящего уровня (LLC) или управляющую информацию
  • FCS — 4-байтный CRС-код
  • FS — статус кадра (12 бит)

Кадры команд (MAC кадры) имеют такую же структуру, что и кадры данных, но поле info — всегда нулевой длины. Код команды передается в поле FC, а для передачи результатов реализовано поле FS.

По содержимому поля Info различают два типа кадров — FDDI SNAP, FDDI 802.2. Они похожи, за небольшими исключениями:

  • В FDDI имеется два байта управления кадров, несущие его параметры и поле состояние кадра. В Ethernet нету аналогов
  • Кадры Ethernet имеют поле длины, где не реализовано в FDDI (оно и не нужно)

На рис.8 показаны форматы кадров FDDI SNAP, FDDI 802.2.

Сеть FDDI

Стандарт FDDI (Fiber Distributed Data Interface) был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI.

Стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring.

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Основные технические характеристики сети FDDI.

Максимальное количество абонентов сети – 1000.

Максимальная протяженность кольца сети – 20 (100)километров.

Максимальное расстояние между абонентами сети – 2 километра.

Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

Метод доступа – маркерный.

Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Форматы кадров

Рис. Формат информационного кадра (Frame) и формат маркера (Token)

Назначение полей:

Преамбула (Preamble) используется для синхронизации. Первоначально она содержит 64 бита, но абоненты, через которых проходит пакет, могут менять ее размер.

Начальный разделитель (SD- Start Delimiter) выполняет функцию признака начала кадра.

Байт управления (FC – Frame Control) содержит информацию о пакете (размер поля адреса, синхронная/асинхронная передача, тип пакета – служебный или информационный, код команды).

Адреса приемника и источника (SA – Source Address и DA – Destination Address) могут быть 6-байтовыми (аналогично Ethernet и Token-Ring) или 2-байтовыми.

Поле данных (Data) имеет переменную длину (от 0 до 4478 байт). В служебных (командных) пакетах поле данных обладает нулевой длиной.

Поле контрольной суммы (FCS – Frame Check Sequence) содержит 32-битную циклическую контрольную сумму пакета (CRC).

Конечный разделитель (ED – End Delimiter) определяет конец кадра.

Байт состояния пакета (FS – Frame Status) включает в себя бит обнаружения ошибки, бит распознавания адреса и бит копирования (аналогично Token-Ring).

Формат байта управления сети FDDI (рис. 3):

Бит класса пакета определяет тип пакета: синхронный или асинхронный.

Бит длины адреса устанавливает, какой адрес (6-байтовый или 2-байтовый) используется в данном пакете.

Поле типа пакета (два бита) определяет, управляющий это пакет или информационный.

Поле кода команды (четыре бита) указывает на то, какую команду должен выполнить приемник (если это управляющий пакет).

Рис. 3. Формат байта управления

Построение сети

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Топология сети FDDI – это двойное кольцо, где в сети применяется два разнонаправленных оптоволоконных кабеля. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется. Эти кольца обеспечивают резервирование передачи друг друга, то есть если на одном кольце возникнут некоторые проблемы, то в передачу включится другое. FDDI сам распознает и устранит возникшие проблемы. Этот режим работы сети называется "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Так же такое решение позволяет использовать полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

Абоненты (станции) класса А (абоненты двойного подключения, DAS) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

Абоненты (станции) класса В (абоненты одинарного подключения, SAS –) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы, включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC) и одинарного подключения (SAC).

Пример конфигурации сети FDDI представлен на рис. 4

Рис. 4. Пример конфигурации сети FDDI

Принцип передачи информации

В FDDI применяется так называемая множественная передача маркера.

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции маркер (токен доступа). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции.

    Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.

    Когда маркер пришел, абонент удаляет его из сети и передает свой пакет.

    Сразу после передачи своего пакета абонент посылает новый маркер.

    Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу.

    Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

    Получив обратно по кольцу свой пакет, абонент-отправитель уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры. Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена.